• Title/Summary/Keyword: IEEE 802.15.4 Standard

Search Result 156, Processing Time 0.027 seconds

An indoor localization approach using RSSI and LQI based on IEEE 802.15.4 (IEEE 802.15.4기반 RSSI와 LQI를 이용한 실내 위치추정 기법)

  • Kim, Jung-Ha;Kim, Hyun-Jun;Kim, Jong-Su;Lee, Sung-Geun;Seo, Dong-Hoan
    • Journal of Advanced Marine Engineering and Technology
    • /
    • v.38 no.1
    • /
    • pp.92-98
    • /
    • 2014
  • Recently, Fingerprint approach using RSSI based on WLAN has been many studied in order to construct low-cost indoor localization systems. Because this technique is relatively evaluated non-precise positioning technique compared with the positioning of Ultra-Wide-Band(UWB), the performance of the Fingerprint based on WLAN should be continuously improved to implement various indoor location. Therefore, this paper presents a Fingerprint approach which can improve the performance of localization by using RSSI and LQI contained IEEE 802.15.4 standard. The advantages of these techniques are that the characteristics of each location is created more clearly by utilizing RSSI and LQI and Fingerprint technique is improved by using the modified Euclidean distance method. The experimental results which are applied in NLOS indoor environment with various obstacles show that the accuracy of localization is improved to 22% compared to conventional Fingerprint.

Efficient Network Configuration Method for Mobile Nodes in Sensor Networks (센서 네트워크의 이동 노드를 위한 효율적 네트워크 구성 방법)

  • Lee, Jae-Hyung;Lee, Eung-Soo;Kim, Dong-Sung
    • Journal of the Institute of Electronics Engineers of Korea CI
    • /
    • v.47 no.6
    • /
    • pp.113-123
    • /
    • 2010
  • In this paper, an efficient network configuration method is proposed for mobile nodes in LR-WPAN (Low Rate Wireless Personal Area Network) based on the IEEE 802.15.4 standard. The proposed MSBS (mobile sensor beacon setup) method can be used to implement a joining procedure by which an improved processing rate can be achieved. This improvement is achieved by using BOP (Beacon only Period). In this method, the performance of mobile nodes is enhanced by using information on depth, traffic, and RSSI (Received Signal Strength Indication). By using the MSBS method, trusted data can be transferred and traffic overloads that occur at specific nodes can be prevented. The information obtained from the mobile nodes in wireless networks is analyzed using the proposed method, in order to study the performance of the method. Simulation results show that the MSBS method can be used to obtain an efficient network configuration according to the mobility of nodes in LR-WPAN.

A Study on Real Time Traffic Performance Improvement Considering QoS in IEEE 802.15.6 WBAN Environments (IEEE 802.15.6 WBAN 환경에서 QoS를 고려한 실시간 트래픽 성능향상에 관한 연구)

  • Ro, Seung-Min;Kim, Chung-Ho;Kang, Chul-Ho
    • Journal of the Institute of Electronics Engineers of Korea TC
    • /
    • v.48 no.4
    • /
    • pp.84-91
    • /
    • 2011
  • Recently, WBAN(Wireless Body Area Network) which has progressed standardization based on IEEE 802.15.6 standardization is a network for the purpose of the short-range wireless communications within around 3 meters from the inner or outer human body. Effective QoS control technique and data efficient management in limited bandwidth such as audio and video are important elements in terms of users and loads in short-range wireless networks. In this paper, for high-speed WBAN IEEE 802.15.6 standard, the dynamic allocation to give an efficient bandwidth management and weighted fair queueing algorithm have been proposed through the adjustment of the super-frame about limited data and Quality of Service (QoS) based on the queuing algorithm. Weighted Fair Queueing(WFQ) Algorithm represents the robust performance about elements to qualitative aspects as well as maintaining fairness and maximization of system performance. The performance results show that the dynamic allocation expanded transmission bandwidth five times and the weighted fair queueing increased maximum 24.3 % throughput and also resolved delay bound problem.

Fragmentation Management Method for 6LoWPAN (6LoWPAN에서 단편화 관리 기법)

  • Seo, Hyun-Gon;Han, Jae-Il
    • Journal of the Institute of Electronics Engineers of Korea TC
    • /
    • v.46 no.5
    • /
    • pp.130-138
    • /
    • 2009
  • 6LoWPAN is IPv6 packets transmission technology at Sensor network over the IEEE 802.15.4 Standard MAC and Physical layer. Adaptation layer between IP layer and MAC layer performs fragmentation and reassembly of packet for transmit IPv6 packets. RFC4944, IETF 6LoWPAN WG standard document define packet fragmentation and reassembly. In this paper, we propose the IRM(Immediate Retransmission Method) and SRM(Selective Retransmission Method) to manage packet fragmentation and reassembly at 6LoWPAN. Each time destination receives a fragmented packet, it sends Ack message to the source node on IRM. However, on SRM, the destination node receives all fragmented packet, it sends Ack message or Nak message to the source node. In this case, Nak message include the dropped packet number. To compare the performance of the proposed schemes, we develop a simulator using C++. The result of simulation shows the proposed schemes provider better performance than RFC4944 standard scheme.

Implementation of a Context-awareness based UoC Architecture for MANET (MANET에서 상황인식 기반의 UoC Architecture 구현)

  • Doo, Kyoung-Min;Lee, Kang-Whan
    • Journal of the Korea Institute of Information and Communication Engineering
    • /
    • v.12 no.6
    • /
    • pp.1128-1133
    • /
    • 2008
  • Context-aware computing has been attracting the attention as an approach to alleviating the inconvenience in human-computer interactions. This paper proposes a context-aware system architecture to be implemented on an UoC (Ubiquitous system on Chip). A new proposed technology of CRS (Context Recognition Switch) and DOS (Dynamic and Optimal Standard) based on Context-awareness system architecture with pre-processor, HPSP(High Performance Signal Processor) in this paper. And proposed a new algorithm using in network topology processor shows for Ubiquitous Computing System. implementing in UoC (Ubiquitous System on Chip) base on the IEEE 802.15.4 WPAN (Wireless Personal Area Network) standard. Also, This context-aware based UoC architecture has been developed to apply to mobile intelligent robots which would support human in a context-aware manner.

Optimal CW Synchronization Scheme in IEEE 802.11 WLANs (IEEE 802.11 WLAN 환경에서 최적의 CW 공유 방안)

  • Lee, Jin-Lee;Lee, Su-Bin;Kyung, Yeunwoong
    • Journal of Internet of Things and Convergence
    • /
    • v.6 no.4
    • /
    • pp.15-19
    • /
    • 2020
  • In this paper, we propose a optimal CW(Conention Window) synchronization scheme in IEEE 802.11 WLANs. IEEE 802.11 WLANs support DCF(Distributed Coordination Function) mode for the MAC(Medium Access Control) operation. In DCF, the CW increases exponentially according to the collisions and becomes minimum CW according to the success of data transmissions. However, since the base minimum CW value is hardware or standard specific, the number of active stations and network status are not considered to determine the CW value. Even though the researches on optimal CW have beend conducted, they do not consider the optimal CW synchronization among mobile stations which occur network performance degradation. Therefore, this paper calculates the optimal CW value and shares it with mobile stations in the network.

A Study on the Location Awareness System Using TOA(Time of Arrival) of CSS(Chirp Spread Spectrum) Algorithm (CSS 기반의 TOA 알고리즘을 이용한 위치인식 시스템 구현에 관한 연구)

  • Kim, Jung-Soo;Yang, Jin-Uk;Yang, Sung-Hyun
    • The Journal of The Korea Institute of Intelligent Transport Systems
    • /
    • v.7 no.2
    • /
    • pp.13-25
    • /
    • 2008
  • In this paper, we propose the Location Awareness System adjusting Ranging Technology for CSS(Chirp Spread Spectrum) which is adopted on 2.45GHz standard in IEEE 802.15.4a and TOA(Time-of-Arrival) algorithm. The conventional methods have adopted RSSI, ultrasonic waves and infrared rays in Zigbee. RSSI measures strength indication of received signal and recognizes the position of nodes in RF boundary. However, this technology has the following problems; lots of error by the change of the channel environment and much power consumption. In this paper, adopting chirp pulse on 2.45GHz standard in IEEE 802.15.4a and SDS-TWR(Symmetrical Double Side-Two Way Ranging) method using the characteristic of Spread Spectrum, a new Location Awareness System is suggested. The distance and the coordinate are measured within ${\pm}\;5cm$ by TOA(Time of Arrival) algorithm and proposed algorithm and the data in error rate is decreased less than 1%. Through these results, the algorithm suggested in this paper is verified for its performance in a computer simulation.

  • PDF

Class 4 Active RFID Multi-hop Relay System based on IEEE 802.15.4a Low-Rate UWB in Sensor Network

  • Zhang, Hong;Hong, Sung-Hyun;Chang, Kyung-Hi
    • KSII Transactions on Internet and Information Systems (TIIS)
    • /
    • v.4 no.3
    • /
    • pp.258-272
    • /
    • 2010
  • The low-rate (LR) UWB is a promising technology for the ubiquitous sensor network (USN) due to its extremely low power consumption and simple transceiver implementation. However the limited communication range is a bottleneck for its widespread use. This paper deals with a new frame structure of class 4 active RFID multi-hop relay system based on ISO/IEC 18000-7 standard integrating with IEEE 802.15.4a LR-UWB PHY layer specification, which sets up a connection to USN. As a result of the vital importance of the coverage and throughput in the application of USN, further we analyze the performance of the proposed system considered both impulse radio UWB (IR-UWB) and chirp spread spectrum (CSS). Our simulation results show that the coverage and throughput are remarkably increased.

Channel assignment for 802.11p-based multi-radio multi-channel networks considering beacon message dissemination using Nash bargaining solution (802.11p 기반 다중 라디오 다중채널 네트워크 환경에서 안전 메시지 전송을 위한 내쉬 협상 해법을 이용한 채널할당)

  • Kwon, Yong-Ho;Rhee, Byung-Ho
    • Journal of Internet Computing and Services
    • /
    • v.15 no.3
    • /
    • pp.63-69
    • /
    • 2014
  • For the safety messages in IEEE 802.11p vehicles network environment(WAVE), strict periodic beacon broadcasting requires status advertisement to assist the driver for safety. WAVE standards apply multiple radios and multiple channels to provide open public road safety services and improve the comfort and efficiency of driving. Although WAVE standards have been proposed multi-channel multi-radio, the standards neither consider the WAVE multi-radio environment nor its effect on the beacon broadcasting. Most of beacon broadcasting is designed to be delivered on only one physical device and one control channel by the WAVE standard. also conflict-free channel assignment of the fewest channels to a given set of radio nodes without causing collision is NP-hard, even with the knowledge of the network topology and all nodes have the same transmission radio. Based on the latest standard IEEE 802.11p and IEEE 1609.4, this paper proposes an interference aware-based channel assignment algorithm with Nash bargaining solution that minimizes interference and increases throughput with wireless mesh network, which is deigned for multi-radio multi-cahnnel structure of WAVE. The proposed algorithm is validated against numerical simulation results and results show that our proposed algorithm is improvements on 8 channels with 3 radios compared to Tabu and random channel allocation algorithm.

Performance Analysis of Multiple-Hop Wireless Body Area Network

  • Hiep, Pham Thanh;Hoang, Nguyen Huy;Kohno, Ryuji
    • Journal of Communications and Networks
    • /
    • v.17 no.4
    • /
    • pp.419-427
    • /
    • 2015
  • There have been increases in the elderly population worldwide, and this has been accompanied by rapid growth in the health-care market, as there is an ongoing need to monitor the health of individuals. Wireless body area networks (WBANs) consist of wireless sensors attached on or inside the human body to monitor vital health-related problems, e.g., electrocardiograms (ECGs), electroencephalograms (EEGs), and electronystagmograms (ENGs). With WBANs, patients' vital signs are recorded by each sensor and sent to a coordinator. However, because of obstructions by the human body, sensors cannot always send the data to the coordinator, requiring them to transmit at higher power. Therefore, we need to consider the lifetime of the sensors given their required transmit power. In the IEEE 802.15.6 standard, the transmission topology functions as a one-hop star plus one topology. In order to obtain a high throughput, we reduce the transmit power of the sensors and maintain equity for all sensors. We propose the multiple-hop transmission for WBANs based on the IEEE 802.15.6 carrier-sense multiple-access with collision avoidance (CSMA/CA) protocol. We calculate the throughput and variance of the transmit power by performing simulations, and we discuss the results obtained using the proposed theorems.