• Title/Summary/Keyword: ID-based node authentication protocol

Search Result 9, Processing Time 0.021 seconds

ID-based Sensor Node Authentication for Multi-Layer Sensor Networks

  • Sung, Soonhwa;Ryou, Jaecheol
    • Journal of Communications and Networks
    • /
    • v.16 no.4
    • /
    • pp.363-370
    • /
    • 2014
  • Despite several years of intense research, the security and cryptography in wireless sensor networks still have a number of ongoing problems. This paper describes how identification (ID)-based node authentication can be used to solve the key agreement problem in a three-layer interaction. The scheme uses a novel security mechanism that considers the characteristics, architecture, and vulnerability of the sensors, and provides an ID-based node authentication that does not require expensive certificates. The scheme describes the routing process using a simple ID suitable for low power and ID exposure, and proposes an ID-based node authentication. This method achieves low-cost communications with an efficient protocol. Results from this study demonstrates that it improves routing performance under different node densities, and reduces the computational cost of key encryption and decryption.

A Design of Hadoop Security Protocol using One Time Key based on Hash-chain (해시 체인 기반 일회용 키를 이용한 하둡 보안 프로토콜 설계)

  • Jeong, Eun-Hee;Lee, Byung-Kwan
    • The Journal of Korea Institute of Information, Electronics, and Communication Technology
    • /
    • v.10 no.4
    • /
    • pp.340-349
    • /
    • 2017
  • This paper is proposed Hadoop security protocol to protect a reply attack and impersonation attack. The proposed hadoop security protocol is consists of user authentication module, public key based data node authentication module, name node authentication module, and data node authentication module. The user authentication module is issued the temporary access ID from TGS after verifing user's identification on Authentication Server. The public key based data node authentication module generates secret key between name node and data node, and generates OTKL(One-Time Key List) using Hash-chain. The name node authentication module verifies user's identification using user's temporary access ID, and issues DT(Delegation Token) and BAT(Block Access Token) to user. The data node authentication module sends the encrypted data block to user after verifing user's identification using OwerID of BAT. Therefore the proposed hadoop security protocol dose not only prepare the exposure of data node's secret key by using OTKL, timestamp, owerID but also detect the reply attack and impersonation attack. Also, it enhances the data access of data node, and enforces data security by sending the encrypted data.

MAC Layer Based Certificate Authentication for Multiple Certification Authority in MANET

  • Sekhar, J. Chandra;Prasad, Ramineni Sivarama
    • IEIE Transactions on Smart Processing and Computing
    • /
    • v.3 no.5
    • /
    • pp.298-305
    • /
    • 2014
  • In this study, a novel Randomly Shifted Certification Authority Authentication protocol was used in ad hoc networks to provide authentication by considering the MAC layer characteristics. The nodes achieve authentication through the use of public key certificates issued by a CA, which assures the certificate's ownership. As a part of providing key management, the active CA node transfers the image of the stored public keys to other idle CA nodes. Finally the current active CA randomly selects the ID of the available idle CA and shifts the CA ownership by transferring it. Revoking is done if any counterfeit or duplicate non CA node ID is found. Authentication and integrity is provided by preventing MAC control packets, and Enhanced Hash Message Authentication Code (EHMAC) can be used. Here EHMAC with various outputs is introduced in all control packets. When a node transmits a packet to a node with EHMAC, verification is conducted and the node replies with the transmitter address and EHMAC in the acknowledgement.

Security enhanced privacy-aware two-factor authentication protocol for wireless sensor networks (무선 센서 네트워크 환경을 위한 보안성이 향상된 프라이버시 보호형 two-factor 인증 프로토콜)

  • Choi, Younsung;Chang, Beom-Hwan
    • Journal of Korea Society of Digital Industry and Information Management
    • /
    • v.15 no.4
    • /
    • pp.71-84
    • /
    • 2019
  • Various researchers conducted the research on two-factor authentication suitable for wireless sensor networks (WSNs) after Das first proposed two-factor authentication combining the smart card and password. After then, To improve the security of user authentication, elliptic curve cryptography(ECC)-based authentication protocols have been proposed. Jiang et al. proposed a privacy-aware two-factor authentication protocol based on ECC for WSM for resolving various problems of ECC-based authentication protocols. However, Jiang et al.'s protocol has the vulnerabilities on a lack of mutual authentication, a risk of SID modification and a lack of sensor anonymity, and user's ID exposed on sensor node Therefore, this paper proposed security enhanced privacy-aware two-factor authentication protocol for wireless sensor networks to solve the problem of Jiang et al.'s protocol, and security analysis was conducted for the proposed protocol.

A Black Hole Detection Protocol Design based on a Mutual Authentication Scheme on VANET

  • Lee, ByungKwan;Jeong, EunHee
    • KSII Transactions on Internet and Information Systems (TIIS)
    • /
    • v.10 no.3
    • /
    • pp.1467-1480
    • /
    • 2016
  • This paper proposes "A Black Hole Detection Protocol Design based on a Mutual Authentication Scheme on VANET." It consists of the Mutual Authentication Scheme (MAS) that processes a Mutual Authentication by transferring messages among a Gateway Node, a Sensor Node, and a User Node and the Black Hole Detection Protocol (BHDP) which detects a Non-Authentication Node by using the Session Key computed in the MAS and a Black Hole by using the Broadcasting Table. Therefore, the MAS can reduce the operation count of hash functions more than the existing scheme and protect a privacy from an eavesdropping attack and an information exposure by hashing a nonce and user's ID and password. In addition, the MAS prevents a replay attack by using the randomly generated nonce and the time stamp. The BHDP improves Packet Delivery ratio and Throughput more than the AODV with Black hole by 4.79% and 38.28Kbps. Also, it improves Packet Delivery ratio and Throughput more than the IDSAODV by 1.53% and 10.45Kbps. Hence it makes VANET more safe and reliable.

A Robust Mutual Authentication Protocol for Wireless Sensor Networks

  • Chen, Tien-Ho;Shih, Wei-Kuan
    • ETRI Journal
    • /
    • v.32 no.5
    • /
    • pp.704-712
    • /
    • 2010
  • Authentication is an important service in wireless sensor networks (WSNs) for an unattended environment. Recently, Das proposed a hash-based authentication protocol for WSNs, which provides more security against the masquerade, stolen-verifier, replay, and guessing attacks and avoids the threat which comes with having many logged-in users with the same login-id. In this paper, we point out one security weakness of Das' protocol in mutual authentication for WSN's preservation between users, gateway-node, and sensor nodes. To remedy the problem, this paper provides a secrecy improvement over Das' protocol to ensure that a legal user can exercise a WSN in an insecure environment. Furthermore, by presenting the comparisons of security, computation and communication costs, and performances with the related protocols, the proposed protocol is shown to be suitable for higher security WSNs.

An Authentication Scheme Using OAuth and Cyber Physical Social System (Cyber-Physical-Social 시스템과 OAuth를 이용한 IoT 인증 기법)

  • Cho, Jeong-woo;Lee, Kuk-young;Lee, Ki Young
    • Proceedings of the Korean Institute of Information and Commucation Sciences Conference
    • /
    • 2016.05a
    • /
    • pp.348-351
    • /
    • 2016
  • Recently on IoT environment, there is necessary of protected network, which is only specific user can access it. Applying OAuth protocol on IoT, it can be easier to construct network authentication system, but it is hard to construct protected network authentication system. And there is weakness of OAuth protocol, which is easily attacked by sniffing Token by attacker. So, it is necessary to secondary authentication for OAuth. In ultimate IoT, the fog computing is essential. Fog computing is extension of cloud that enables networking not only in core system but also in edge system and communication node to node. Strength of fog computing is location awareness, support for mobility, and so on. If authentication in fog computing uses this strength, it can be more specialized in Fog Computing. So, in secondary Authentication, using Cyber-Physical-Social System will increase convenience of user than using existing authentication system, such as authentication certificate, id/password and group key, which is inconvenient for user. This study is about authentication based Cyber-Physical-Social System.

  • PDF

An Authentication Protocol-based Multi-Layer Clustering for Mobile Ad Hoc Networks (이동 Ad Hoc 망을 위한 다중 계층 클러스터링 기반의 인증 프로토콜)

  • Lee Keun-Ho;Han Sang-Bum;Suh Heyi-Sook;Lee Sang-Keun;Hwang Chong-Sun
    • Journal of KIISE:Information Networking
    • /
    • v.33 no.4
    • /
    • pp.310-323
    • /
    • 2006
  • In this paper, we describe a secure cluster-routing protocol based on a multi-layer scheme in ad hoc networks. We propose efficient protocols, Authentication based on Multi-layer Clustering for Ad hoc Networks (AMCAN), for detailed security threats against ad hoc routing protocols using the selection of the cluster head (CH) and control cluster head (CCH) using a modification of cluster-based routing ARCH and DMAC. This protocol provides scalability of Shadow Key using threshold authentication scheme in ad hoc networks. The proposed protocol comprises an end-to-end authentication protocol that relies on mutual trust between nodes in other clusters. This scheme takes advantage of Shadow Key using threshold authentication key configuration in large ad hoc networks. In experiments, we show security threats against multilayer routing scheme, thereby successfully including, establishment of secure channels, the detection of reply attacks, mutual end-to-end authentication, prevention of node identity fabrication, and the secure distribution of provisional session keys using threshold key configuration.

Identity-based AAA Authentication Protocol in Mobile Node (모바일 노드에서의 ID기반의 AAA인증 프로토콜)

  • Jo Yeong-Bok;Kim Dong-Myeong;Lee Sang-Ho
    • Proceedings of the Korean Institute of Intelligent Systems Conference
    • /
    • 2006.05a
    • /
    • pp.331-335
    • /
    • 2006
  • 인터넷의 발달과 사용자 증가로 인해 IETF는 다양한 네트워크와 프로토콜 상에서 안전하고 신뢰성 있는 사용자 인증을 위해 AAA를 제안하였다. 그러나 AAA의 최신 버전인 Diameter 표준의 인증 방식은 상호인증과 부인방지를 제공하지 않는다. 이러한 Diameter의 인증을 보완하기 위해 공개키를 이용한 AAA 인증 방식이 제안되었으나, 통신과 연산의 오버헤드로 인해 이동 노드에 적용이 어렵다. 이러한 단점을 극복한 ID 기반 AAA 인증 방식이 제안 되었으나 공모공격과 위장공격으로부터의 취약점을 가진다. 이 논문에서는 공모공격과 위장공격에 안전하고, 계산적 전력적 능력이 부족한 이동 노드의 연산량을 감소시키는 새로운 ID기반 AAA인증 방식을 제안한다. 제안한 방식의 검증을 위해 기존 방식을 비교 평가하여 암호학적인 안전성과 연산량의 효율성을 검증한다. 제안 방식은 이동 노드의 인증시 2개의 난수를 생성하여 안전성을 제공하며, Mobile 노드의 지수연산을 줄임으로 계산 전력적 측면에서 효율적이고 서버의 성능에 따라 인증 수행 시간을 감소 시켜 끊김 없는 서비스를 제공할 수 있는 장점을 갖는다.

  • PDF