• Title/Summary/Keyword: ID-ICP/MS

Search Result 16, Processing Time 0.016 seconds

Abundane of Rare Earth Element in Duwon Meteorite and Its Geochchemical Significance (두원운석의 희토류원소 존재도 및 지구화학적 의의)

  • Lee Seung-Gu;Kim Kun-Han;Choi Byeon-Gak
    • The Journal of the Petrological Society of Korea
    • /
    • v.13 no.4
    • /
    • pp.238-243
    • /
    • 2004
  • Duwon meteorite was fallen on 23 November 1943 in Duwonmyeon, Goheung, Jeolanam-Do. We measured rare earth element abundance of Duwon meteorite by isotope dilution thermal ion mass spectrometry (ID-TIMS) and ICP-MS. As a result, except La and Ce, abundance of other rare earth element show a correspondence within 10% of error range. However, La and Ce show more than 70% in abundance, which is considered due to 1) experimental procedure or 2) inhomogeneity of sample. Leedey meteorite was fallen on 25 November 1943 in Dewey County, Oklahoma, USA. which suggested that fallen difference between Leedey and Duwon meteorites is only 2 days. Leedey and Duwon meteorites are classified as ordinary chondrite of L6 type. In Leedey chondrite-normalized REE pattern, Duwon meteorite shows nearly flattened, which suggests close relationship between Leedey and Duwon meteorites meteoritically or cosmochemically.

Development of a Nutritional Supplement Certified Reference Material for Elemental Analysis

  • Lee, Jong Wha;Heo, Sung Woo;Kim, Hwijin;Lim, Youngran;Lee, Kyoung-Seok;Yim, Yong-Hyeon
    • Mass Spectrometry Letters
    • /
    • v.9 no.4
    • /
    • pp.105-109
    • /
    • 2018
  • A certified reference material (CRM) for the analysis of inorganic nutrients in nutritional supplements has been developed. Accurate mass fractions of chromium (Cr), iron (Fe), copper (Cu), and zinc (Zn) were determined by isotope dilution inductively coupled plasma mass spectrometry (ID ICP/MS). The measurement results were used to assign certified values for the CRM, which were metrologically traceable to the definitions of the measurement units in the International System of Units (SI). Production of a candidate reference material (RM) and the certification processes are summarized. Each nutrient in the CRM showed good homogeneity, which was estimated using relative standard deviations of the measurement results of twelve bottles in a batch. This CRM is expected to be an important reference to improve reliability and comparability of nutrient analyses in nutritional supplements and related samples in analytical laboratories.

A comparison study of 76Se, 77Se and 78Se isotope spikes in isotope dilution method for Se (셀레늄의 동위원소 희석분석법에서 첨가 스파이크 동위원소 76Se, 77Se 및 78Se들의 비교분석)

  • Kim, Leewon;Lee, Seoyoung;Pak, Yong-Nam
    • Analytical Science and Technology
    • /
    • v.29 no.4
    • /
    • pp.170-178
    • /
    • 2016
  • Accuracy and precision of ID methods for different spike isotopes of 76Se, 77Se, and 78Se were compared for the analysis of Selenium using quadrupole ICP/MS equipped with Octopole reaction cell. From the analysis of Se inorganic standard solution, all of three spikes showed less than 1 % error and 1 % RSD for both short-term (a day) and long-term (several months) periods. They showed similar results with each other and 78Se showed was a bit better than 76Se and 77Se. However, different spikes showed different results when NIST SRM 1568a and SRM 2967 were analyzed because of the several interferences on the m/z measured and calculated. Interferences due to the generation of SeH from ORC was considered as well as As and Br in matrix. The results showed similar accuracy and precisions against SRM 1568a, which has a simple background matrix, for all three spikes and the recovery rate was about 80% with steadiness. The %RSD was a bit higher than inorganic standard (1.8 %, 8.6 %, and 6.3 % for 78Se, 76Se and 77Se, respectively) but low enough to conclude that this experiment is reliable. However, mussel tissue has a complex matrix showed inaccurate results in case of 78Se isotope spike (over 100 % RSD). 76Se and 77Se showd relatively good results of around 98.6 % and 104.2 % recovery rate. The errors were less than 5 % but the precision was a bit higher value of 15 % RSD. This clearly shows that Br interferences are so large that a simple mathematical calibration is not enough for a complex-matrixed sample. In conclusion, all three spikes show similar results when matrix is simple. However, 78Se should be avoided when large amount of Br exists in matrix. Either 76Se or 77Se would provide accurate results.

Quantification of seleno proteins in Korean blood serum using solid phase extraction and affinity chromatography-inductively coupled plasma/mass spectrometry (고체상 추출과 친화 크로마토 그라피-유도결합 플라즈마 질량분석법을 이용한 한국인 혈청에서의 셀레노 단백질 정량)

  • Ahn, Ji-Yun;Kwon, Hyo-Sik;Pak, Yong-Nam
    • Analytical Science and Technology
    • /
    • v.27 no.2
    • /
    • pp.92-99
    • /
    • 2014
  • Interferences were removed using anion exchange solid phase extraction (AE SPE) in quantification of selenoproteins in Korean human blood serum with affinity high performance liquid chromatography (AF HPLC)-inductively coupled plasma/mass spectrometry (ICP/MS). The average selenium level obtained for healthy Koreans was $94.3{\pm}2.3ngg^{-1}$ using isotope dilution method. AE SPE was coupled to AF column to separate 3 selenoproteins, glutathione peroxidase GPx, selenoprotein SelP, and selenoalbumin SeAlb. Post column isotope dilution was employed to quantify the proteins. The certified reference material of human blood serum BCR-637 was analyzed to give total selenoprotein concentration of $85.4{\pm}3.4ngg^{-1}$, which agreed well with the reference value of $81{\pm}7ngg^{-1}$. The pooled concentration of GPx, SelP, and SeAlb from healthy Koreans (n=20) was $12.1{\pm}1.4ngg^{-1}$, $57.2{\pm}2.0ngg^{-1}$, and $20.0{\pm}1.9ngg^{-1}$, respectively. The sum of selenoproteins is $89.3ngg^{-1}$, which is about the same as the total selenium concentration of $94.3ngg^{-1}$. The fact suggests that selenium in blood serum is mostly consisted of selenoproteins. After the removal of interference, GPx showed a significant decrease (more than 50%) from $25.0ngg^{-1}$ to $12.1ngg^{-1}$. It was identified that the interference in blood serum was mostly from GPx and the use of AE SPE was proven to be efficient in eliminating Cl and Br that cause interference to GPx.

Development of soil certified reference material for determination of the hazardous elements (유해원소 측정용 토양 인증표준물질 개발)

  • Kim, In-Jung;Min, Hyung-Sik;Suh, Jung-Ki;Han, Myung-Sub;Lim, Myung-Chul;Kim, Young-Hee;Shin, Sun-Kyoung;Cho, Kyung-Haeng
    • Analytical Science and Technology
    • /
    • v.23 no.5
    • /
    • pp.485-491
    • /
    • 2010
  • A certified reference material (CRM) of KRISS 109-03-SSD was developed for the analysis of hazardous elements in soil. The target elements were As, Cd, Cr, Cu, Hg, Ni, Pb, Zn being regulated by the Soil Environment Conservation Act. Starting material was collected from tailing dump of an unworked tungsten mine at Sangdong (Gangwon-do, Korea). The starting material under-went through a series of fabricating process steps of screening, drying, grinding, sieving, blending, bottling, sterilization and was certified according to the ISO Guide 35. Isotope dilution-inductively coupled mass spectrometry (ID-ICP/MS) and instrumental neutron activation analysis (INAA) were used for the measurement. Homogeneity was tested according to ISO 13528 annex B. The certified values were determined using the results from two different methods or from two independent measurements using a method. Finally, certified values of seven elements of arsenic, cadmium, chromium, copper, lead, nickel and zinc were determined. Mercury did not satisfied the criteria of homogeneity and the result would be provided for information only, together with iron and tungsten. It was also studied, the extractable fraction of elements by aqua regia according to the ISO 11466 protocol being frequently studied for the purpose of environmental monitoring. It was performed as a inter-laboratory study by 6 laboratories of a public institute and universities. Standard deviation among the laboratories was much bigger than the uncertainty of the certified value. The result of inter-laboratory study on the extractable fraction will be provided for information, only.

Determination of bromine in 1000 ㎍/g Cl standard solution by ID-ICPMS (동위원소희석 질량분석법에 의한 1000 ㎍/g 염소 표준용액 중 브롬 불순물 분석)

  • Park, Chang Joon;Suh, Jung Kee;Song, Hyun Joo;Lee, Dong Soo
    • Analytical Science and Technology
    • /
    • v.19 no.1
    • /
    • pp.1-8
    • /
    • 2006
  • The isotope dilution method was used for the determination of Br impurity in $1000{\mu}g/g$ Cl standard solution. Since relatively pure KCl salt was used for the preparation of the Cl standard solution, the Br impurity determination suffers from both spectral and non-spectral interferences due to the presence of a large amount of K and Cl matrices. AG2-X8 anion-exchange resin was employed to separate the Br analyte from the matrices, and RF power was raised to 1500 W and nebulizer gas flow rate was lowered to 0.77 L/min to reduce background from the $ArArH^+$ molecular ions. The Br impurity in the $1000{\mu}g/g$ Cl standard solution was determined to be 43.7 ng/g with the standard addition method. The analytical result was in good agreement with 41.2 ng/g (RSD 1.6%) determined by the isotope dilution method to lower uncertainty from poor reproducibility of the anion-exchange process.