• Title/Summary/Keyword: ICRP

Search Result 239, Processing Time 0.031 seconds

Preliminary Study on Applicability of Accumulate Personal Neutron Dosimeter for Cosmic-ray Exposure of Aviators (운항승무원의 우주방사선 피폭 평가에 있어 누적형 개인 중성자 선량계의 적용가능성 예비 연구)

  • Kim, Hyeong-Jin;Chang, Byung-Uck;Byun, Jong-In;Song, Myeong Han;Kim, Jung-Ho
    • Journal of Radiation Protection and Research
    • /
    • v.38 no.1
    • /
    • pp.44-51
    • /
    • 2013
  • ICRP recommended that cosmic ray exposure to the pilot and cabin crew would be considered as an occupational exposure due to their relatively high exposure. Since 2012 with the Act No. 10908 (Natural radiation management), the guideline of cosmic ray exposure to the pilot was established in Korea. The applicability of the solid-state nuclear track detector for personal dose assessment of pilot and cabin crew was evaluated. Dose linearity and angle dependence of dosimeters to the neutron were evaluated by $^{252}Cf$ neutron emitting source. The track density has a good agreement with the dose ($r^2$=0.99) and highly dependent on the degree of an angular of the dosimeter to the neutron source. In addition, the dosimeters (SSNTD) were exposed to cosmic ray in an aircraft during its cruising for more than two months in collaboration with Airline Pilots Association of Korea. Although the correlation between the track density from aircraft cruising altitude and expected neutron dose is low, however RSNS dosimeter could be used for personal neutron dosimeter. For application of RSNS as a personal dosimeter for pilot and cabin crew, additional studies are required.

Measurement and Analysis of Pediatric Patient Exposure Dose Using Glass dosimeter and a PC-Based Monte Carlo Program (Glass dosimeter와 PCXMC Program을 이용한 소아피폭선량 측정 및 분석)

  • Kim, Young-Eun;Lee, Jeong-Hwa;Hong, Sun-Suk;Lee, Kwan-Seob
    • Korean Journal of Digital Imaging in Medicine
    • /
    • v.14 no.2
    • /
    • pp.9-14
    • /
    • 2012
  • Exposed dose of young child should be managed necessarily. Young child is more sensitive than adult of a Radioactivity, especially, and lives longer than adult. Must reduce exposed dose which follows The ALARA(As Low As Reasonably Achievable)rule is recommended by ICRP(International Commission on Radiological Protection)within diagnostic useful range. Therefore, We have to prepare Pediatric DRL(Diagnostic Reference Level) in Korea as soon as possible. Consequently, in this study, wish to estimate organ dose and effective dose using PCXMC Program(a PC-Based Monte Carlo Program), and measure ESD(Entrance surface dose)and organ dose using Glass dosimeter, and then compare with DRL which follows EC(European Commission)and NRPB(National Radiological Protection Board). Using glass dosimeter and PCXMC programs conforming to the International Committee for Radioactivity Prevention(ICRP)-103 tissue weighting factor based on the item before the organs contained in the Chest, Skull, Pelvis, Abdomen in the organ doses and effective dose and dose measurements were evaluated convenience. In a straightforward way to RANDO phantom inserted glass dosimeter(GD352M)by using the hospital pediatric protocol, and in a indirect way was PCXMC the program through a virtual simulation of organ doses and effective dose were calculated. The ESD in Chest PA is 0.076mGy which is slightly higher than the DRL of NRPB(UK) is 0.07mGy, and is lower than the DRL of EC(Europe) which is 0.1mGy. The ESD in Chest Lateral is 0.130mGy which is lower than the DRL of EC(Europe) is 0.2mGy. The ESD in Skull PA is 0.423mGy which is 40 percent lower than the DRL of NRPB(UK) is 1.1mGy and is 28 percent lower than the DRL of EC(Europe) is 1.5mGy. The ESD in Skull Lateral is 0.478mGy which is half than the DRL of NRPB(UK) is 0.8mGy, is 40 percent lower than the DRL of EC(Europe) is 1mGy. The ESD in Pelvis AP is 0.293mGy which is half than the DRL of NRPB(UK) is 0.60mGy, is 30 percent lower than the DRL of EC(Europe)is 0.9mGy. Finally, the ESD in Abdomen AP is 0.223mGy which is half than the DRL of NRPB(UK) is 0.5mGy, and is 20 percent lower than the DRL of EC is 1.0mGy. The six kind of diagnostic radiological examination is generally lower than the DRL of NRPB(UK)and EC(Europe) except for Chest PA. Shouldn't overlook the age, body, other factors. Radiological technician must realize organ dose, effective dose, ESD when examining young child in hospital. That's why young child is more sensitive than adult of a Radioactivity.

  • PDF

Medical Exposure of Korean by Diagnostic Radiology and Nuclear Medicine Examinations (진단방사선 및 핵의학 검사에 의한 한국인의 의료상 피폭)

  • Kwon, Jeong-Wan;Jeong, Je-Ho;Jang, Ki-Won;Lee, Jai-Ki
    • Journal of Radiation Protection and Research
    • /
    • v.30 no.4
    • /
    • pp.185-196
    • /
    • 2005
  • Although medical exposure from diagnostic radiology procedures such as conventional x-rays, CT and PET scans is necessary for healthcare purposes, understanding its characteristics and size of the resulting radiation dose to patients is much of worth because medical radiation constitutes the largest artificial source of exposure and the medical exposure is in a trend of fast increasing particularly in the developed society. Annual collective doses and per-caput effective doses from different radiology procedures in Korea were estimated by combining the effective dose estimates per single medical procedure and the health insurance statistics in 2002. Values of the effective dose per single procedure were compiled from different sources including NRPB reports, ICRP 80, MIRDOSE3.1 code and independent computations of the authors. The annual collective dose reaches 27440 man-Sv (diagnostic radiology: 22880 man-Sv, nuclear medicine: 4560 man-Sv) which is reduced to the annual per-caput effective dose of 0.58 mSv by dividing by the national population of 47.7 millions. The collective dose is far larger than that of occupational exposures, in the country operated 16 nuclear power plants in 2002, which is no more than 70 man-Sv in the same year. It is particularly noted that the collective dose due to CT scans amounts 9960 man-Sv. These results implies that the national policy for radiation protection should pay much more attention to optimization of patient doses in medicine.

Calculation of Route Doses for Korean-based International Airline Routes using CARI-6 and Estimation of Aircrew Exposure (CARI-6를 이용한 국제선 노선별 선량 및 항공승무원의 피폭선량 평가)

  • Hong, J.H.;Kwon, J.W.;Jung, J.H.;Lee, J.K.
    • Journal of Radiation Protection and Research
    • /
    • v.29 no.2
    • /
    • pp.141-150
    • /
    • 2004
  • Dose rate characteristics of cosmic radiation field at flight altitudes were analyzed and the route doses to the personnels on board due to cosmic-ray were calculated for Korean-based commercial international airline routes using CARI-6. Annual individual doses to aircrew and the collective effective dose of passengers were estimated by applying the calculated route doses to the flight schedules of aircrew and the air travel statistics of Korea. The result shows that the annual doses to aircrew, around 2.62 mSv, exceed the annual dose limit of public and are comparable to doses of the group of workers occupationally exposed. Therefore it is necessary to consider the frequent flyers as well as the aircrew as the occupational exposure group. The annual collective dose to 11 million Korean passengers in 2001 appeared to be 136 man-Sv. The results should be modified when the dose rates of cosmic radiation at high altitude are revised by taking into account the changes in the radiation weighting factors for protons and neutrons as given in ICRP 92.

Terms Standardization between the Rules of Diagnosis Radiation Equipment Safety Management and Atomic Energy Law : Problems and Suggestions (진단용 방사선발생장치의 안전관리에 관한 규칙과 원자력법의 용어통일 개선 방향)

  • Kim, Hwa-Gon;Kang, Se-Sik;Kim, Chang-Soo;Park, Cheol-Seo
    • Journal of radiological science and technology
    • /
    • v.29 no.1
    • /
    • pp.39-46
    • /
    • 2006
  • The rules and terms are described different meaning, in this results the research is accomplished for preventing practical workers from confusion. Atomic law are kept up modification and development in our situation by the ICRP's recommendation, on the other hand, the rules of diagnosis radiation equipment safety managements are modified partial, then resulted in confusion. The study was comparison between the rules of diagnosis radiation equipment safety management and atomic energy law, and the modification items obtained were as follows. 1. With each other different the terms and units are used. With the exception of special terms for affairs usage, it is needless to say that common term uniformity is standardized. The standardization of rules and guidance have not need to confusion radiological practical workers. 2. The following is omitted. 1) The radiation protection against tile patient and the hospital visitor. 2) Radiation dose limit of the woman patient who is in the process of becoming pregnant. 3) Radiation dose limit of the person who is not regarded as madical madical exposure. 4) The control of the exposure of pregnant of women at work.

  • PDF

Evaluation of Effective Dose and Exposure Level of Radon in Process Handling NORM (인산석고 취급공정에서의 라돈농도 및 유효선량 수준 평가)

  • Chung, Eun Kyo;Jang, Jae Kil;Kim, Jong Kyu;Kim, Joon Beom;Kwon, Jiwoon
    • Journal of Korean Society of Occupational and Environmental Hygiene
    • /
    • v.28 no.3
    • /
    • pp.283-291
    • /
    • 2018
  • Objectives: To monitor the radon concentration level in plants that handle phosphorus rock and produce gypsum board and cement, and evaluate the effective dose considering the effect of radon exposure on the human body. Methods: Airborne radon concentrations were measured using alpha-track radon detectors (${\alpha}$-track, Rn-tech Co., Korea) and continuous monitors (Radon Sentinel 1030, Sun Nuclear Co., USA). Radon concentrations in the air were converted to radon doses using the following equation to evaluate the human effects due to radon. H (mSv/yr) = Radon gas concentration x Equilibrium factor x Occupancy factor x Dose conversion factor. The International Commission on Radiological Protection (ICRP) used $8nSv/(Bq{\cdot}hr/m^3)$ as the dose conversion factor in 2010, but raised it by a factor of four to $33nSv/(Bq{\cdot}hr/m^3)$ in 2017. Results: Radon concentrations and effective doses in fertilizer manufacturing process averaged $14.3(2.7)Bq/m^3$ ($2.0-551.3Bq/m^3$), 0.11-0.54 m㏜/yr depending on the advisory authority and recommendation year, respectively. Radon concentrations in the gypsum-board manufacturing process averaged $14.9Bq/m^3$ at material storage, $11.4Bq/m^3$ at burnability, $8.1Bq/m^3$ at mixing, $10.0Bq/m^3$ at forming, $8.9Bq/m^3$ at drying, $14.7Bq/m^3$ at cutting, and $10.5Bq/m^3$ at shipment. It was low because it did not use phosphate gypsum. Radon concentrations and effective doses in the cement manufacturing process were $23.2Bq/m^3$ in the stowage area, $20.2Bq/m^3$ in the hopper, $16.8Bq/m^3$ in the feeder and $11.9Bq/m^3$ in the cement mill, marking 0.12-0.63 m㏜/yr, respectively. Conclusions: Workers handling phosphorous gypsum directly or indirectly can be assessed as exposed to an annual average radon dose of 0.16 to 2.04 mSv or 0.010 to 0.102 WLM (Working Level Month).

Evaluation of Effective Dose with National Diagnostic Reference Level using Monte-Carlo Simulation (몬테카를로 시뮬레이션을 이용한 국내 일반엑스선검사 진단참고수준의 유효선량 평가)

  • Lee, Seung-Youl;Seoung, Youl-Hun
    • Journal of the Korean Society of Radiology
    • /
    • v.15 no.7
    • /
    • pp.1041-1047
    • /
    • 2021
  • In this study, the effective dose for frequently general radiography among the diagnostic reference level (DRL) for examinations provided by the government in Korea was evaluated using the Monte Carlo N-Particle eXtended (MCNPX) simulation tool. We were selected to evaluate for a total of 5 examination sites which included head anterior-posterior, chest (posterior-anterior, lateral), abdomen anterior-posterior and pelvis anterior-posterior. Physical conditions such as tube voltage and tube current used in MCNPX simulation were used in domestic conditions of the Korea Disease Control and Prevention Agency (KDCA). To evaluate domestic medical radiation exposure, we used the HDRK-Man computerized human phantom manufactured based on the international standard ICRP 103 that was applied to the MCNPX simulation. The phantom could represent the standard body shape of Koreans. As a results, the effective dose corresponding to the DRL based on adult males of head anterior-posterior position was 0.086 mSv, chest posterior-anterior position was 0.05 mSv, chest lateral was 0.354 mSv, abdomen anterior-posterior position was 0.548 mSv, and pelvis anterior-posterior position was 0.451 mSv.

A Study on the Dose Constraints for Occupational Exposure: Focusing on Expert Opinions by Field of Ridiation Industry (직무피폭의 선량제약치에 관한 연구: 분야별 전문가 의견 중심으로)

  • Il Park;Chan Hee Park;Kyu Hwan Jung;Chan Ho Park;Yong Geon Kim;Tae Jin Park
    • Journal of Radiation Industry
    • /
    • v.17 no.1
    • /
    • pp.61-67
    • /
    • 2023
  • A Study on the Introduction of Dose Constraints for Occupational Exposures: Focusing on Experts' Opinions by Field of Radiation Industry. The International Commission on Radiological Protection suggests Justification, Optimization, and Dose Limits as the three principles of radiological protection, among which, as a means of protection optimization, ICRP 103 recommends to set dose constraints. In this study, opinions are collected from experts in each category of radiation industries for stakeholder participation to qualify dose constraints. A guidance and questionnaire for analyzing the dose constraints have been developed for their collection, and opinions were collected from radiation protection experts in selected categories. 20 out of 22 experts, consisted with 91%, have assessed the dose constraints setting is necessary, and 2 experts, consisted with 9%, assessed it is unnecessary. The average of dose constraint presented by experts for RI production institutions is to be the highest level of 15.3 mSv, and light-water reactors (14.6 mSv), non-destructive inspection (14.4 mSv), heavy-water reactor and medical institutes (13.9mSv) is to be above the overall average dose constraint. In case of public institutions, the average dose constraint is to be 8.6mSv, and research institutions (8.8mSv), educational institutions (9.6 mSv), waste disposal sites (9.7 mSv), and general industries (10.6 mSv) are resulted to below the overall average dose constraint. As for the means of setting dose constraints, 8 experts out of 22 suggested setting dose constraints for each specific industry or task. And, 5 experts especially suggest setting dose constraints for the specific groups with relatively high exposure, such as workers with above the record levels. As a countermeasure for workers who exceed the dose constraints, 15 experts out of 22 expressed that the cause analyses for them and preparation for a plan of reducing them are necessary.

Managerial Factors Influencing Dose Reduction of the Nozzle Dam Installation and Removal Tasks Inside a Steam Generator Water Chamber (증기발생기 수실 노즐댐 설치 및 제거작업의 피폭선량 저감에 영향을 주는 관리요인에 관한 연구)

  • Lee, Dhong Ha
    • Journal of the Ergonomics Society of Korea
    • /
    • v.36 no.5
    • /
    • pp.559-568
    • /
    • 2017
  • Objective: The aim of this study is to investigate the effective managerial factors influencing dose reduction of the nozzle dam installation and removal tasks ranking within top 3 in viewpoint of average collective dose of nuclear power plant maintenance job. Background: International Commission on Radiation Protection (ICRP) recommended to reduce unnecessary dose and to minimize the necessary dose on the participants of maintenance job in radiation fields. Method: Seven sessions of nozzle dam installation and removal task logs yielded a multiple regression model with collective dose as a dependent variable and work time, number of participants, space doses before and after shield as independent variables. From the sessions in which a significant reduction in collective dose occurred, the effective managerial factors were elicited. Results: Work time was the most important factor contributing to collective dose reduction of nozzle dam installation and removal task. Introduction of new technology in nozzle dam design or maintenance job is the most important factor for work time reduction. Conclusion: With extended task logs and big data processing technique, the more accurate prediction model illustrating the relationship between collective dose reduction and effective managerial factors would be developed. Application: The effective managerial factors will be useful to reduce collective dose of decommissioning tasks as well as regular preventive maintenance tasks for a nuclear power plant.

Fallout Radioactivity in Korean Foodstutts (Part 4) Stronitium-90 in Liquid Whole Milk Produced in Korea (한국식품 중의 방사능 함량 (제4보) 한국 우유의 스트론튬-90 함량)

  • Yang Kyung Rin
    • Journal of the Korean Chemical Society
    • /
    • v.13 no.2
    • /
    • pp.181-186
    • /
    • 1969
  • The concentration of Strontium-90 in liquid whole milk produced in Korea were measured during past four years. The samples of milk were purchased from dairies in Seoul. Strontium-90 was analysed radiochemically and the amount of stable calcium was also determined. Radioactivity of Yttrium-90 was counted in low background beta counter which has the background of 1.38 cpm. The concentrations of Strontium-90 in the milk are 25.1 PCi $^{90}Sr$/g.Ca in 1965, 26.8 PCi $^{90}Sr$/g. Ca in 1966, 13.7 PCi 90Sr/g.Ca in 1967 and 18.2 PCi $^{90}Sr$/g.Ca in 1968 in annual average. The concentrations of Strontium-90 in the milk of 1967 and of 1968 were decreased approximately compared with the values of 60% 1965 and 1966. From the results we can see that Strontium-90 concentrations in the milk vary roughly proportionally with the specific activity of fallout. Considering on the safety problems, the Strontium-90 levels in the milk produced in Korea were far below the maximum permissible level recommended by ICRP.

  • PDF