• Title/Summary/Keyword: ICPMS

Search Result 21, Processing Time 0.024 seconds

Enhancement of the Corrosion Resistance of CrN Film Deposited by Inductively Coupled Plasma Magnetron Sputtering

  • Chun, Sung-Yong;Kim, Seong-Jong
    • Corrosion Science and Technology
    • /
    • v.20 no.3
    • /
    • pp.112-117
    • /
    • 2021
  • Inductively coupled plasma magnetron sputtering (ICPMS) has the advantage of being able to dramatically improve coating properties by increasing the plasma ionization rate and the ion bombardment effect during deposition. Thus, this paper presents the comparative results of CrN films deposited by direct current magnetron sputtering (dcMS) and ICPMS systems. The structure, microstructure, and mechanical and corrosive properties of the CrN coatings were investigated by X-ray diffractometry, scanning electron microscopy, nanoindentation, and corrosion-resistance measurements. The as-deposited CrN films by ICPMS grew preferentially on a 200 plane compared to dcMS on a 111 plane. As a result, the films deposited by ICPMS had a very compact microstructure with high hardness. The nanoindentation hardness reached 19.8 GPa, and 13.5 GPa by dcMS. The corrosion current density of CrN film prepared by ICPMS was about 9.8 × 10-6 mA/cm2, which was 1/470 of 4.6 × 10-3 mA/cm2, the corrosion current density of CrN film prepared by dcMS.

A comparative study of electrochemical properties in CrN films prepared by inductively coupled plasma magnetron sputtering (유도결합형 플라즈마 마그네트론 스피터로 제작된 CrN 코팅막의 전기화학적 물성 비교 연구)

  • Jang, Hoon;Chun, Sung-Yong
    • Journal of the Korean institute of surface engineering
    • /
    • v.55 no.2
    • /
    • pp.70-76
    • /
    • 2022
  • In this paper, we compared the properties of the chromium nitride (CrN) films prepared by inductively coupled plasma magnetron sputtering (ICPMS). As a comparison, CrN film prepared by a direct current magnetron sputtering (dcMS) is also studied. The crystal structure, surface and cross-sectional microstructure and composite properties of the as-deposited CrN films are compared by x-ray diffraction, field emission scanning electron microscopy, nanoindentation tester and corrosion resistance tester, respectively. It is found that the as-deposited CrN films by ICPMS grew preferentially on (200) plane when compared with that by dcMS on (111) plane. As a result, the films deposited by ICPMS have a very compact microstructure with high hardness: the nanoindentation hardness reached 19.8 GPa and 13.5 GPa by dcMS, respectively. Besides, the residual stress of CrN films prepared by ICPMS is also relatively large. After measuring the corrosion resistance, the corrosion current of films prepared by ICPMS was three order of magnitude smaller than that of CrN films deposited by dcMS.

Microstructures and Mechanical Properties of HfN Coatings Deposited by DC, Mid-Frequency, and ICP Magnetron Sputtering

  • Sung-Yong Chun
    • Corrosion Science and Technology
    • /
    • v.22 no.6
    • /
    • pp.393-398
    • /
    • 2023
  • Properties of hafnium nitride (HfN) coatings are affected by deposition conditions, most often by the sputtering technique. Appropriate use of different magnetron sputtering modes allows control of the structural development of the film, thereby enabling adjustment of its properties. This study compared properties of HfN coatings deposited by direct current magnetron sputtering (dcMS), mid-frequency direct current magnetron sputtering (mfMS), and inductively coupled plasma-assisted magnetron sputtering (ICPMS) systems. The microstructure, crystalline, and mechanical properties of these HfN coatings were investigated by field emission electron microscopy, X-ray diffraction, atomic force microscopy, and nanoindentation measurements. HfN coatings deposited using ICPMS showed smooth and highly dense microstructures, whereas those deposited by dcMS showed rough and columnar structures. Crystalline structures of HfN coatings deposited using ICPMS showed a single δ-HfN phase, whereas those deposited using dcMS and mfMS showed a mixed δ-HfN and HfN0.4 phases. Their performance were increased in the order of dcMS < mfMS < ICPMS, with ICPMS achieving a value of 47.0 GPa, surpassing previously reported results.

Comparison of chemical and photochemical generation of hydrides in Se speciation study with HPLC-HG-ICPMS (HPLC-ICPMS를 이용한 셀레늄 화학종의 연구에서 화학적 및 광화학적 수소화물 발생법의 비교)

  • Ji, Hana;Pak, Yong-Nam
    • Analytical Science and Technology
    • /
    • v.25 no.6
    • /
    • pp.339-344
    • /
    • 2012
  • In this research, hydride generation in HPLC-ICPMS for the selenium speciation was investigated. Chemical and photochemical vapor generation techniques were compared for the effective generation of selenium vapour. $HBr/KBrO_3$ was used for the chemical reduction and a UV lamp was used for the photochemical reduction. It was found out that the photochemical reduction was more effective than the chemical reduction in all of selenium species studied. The optimum conditions for the generation of vapour are 0.4% KI, 2.5% $NaBH_4$, and 1.0 M HCl. The enhancement factor using a photochemical hydride generation was from 6.3 to 16.7 times for inorganic and organic selenium species.

Microstrcture and Mechanical Properties of HfN Films Deposited by dc and Inductively Coupled Plasma Assisted Magnetron Sputtering (직류 및 유도결합 플라즈마 마그네트론 스퍼터링법으로 제조된 HfN 코팅막의 미세구조 및 기계적 물성연구)

  • Jang, Hoon;Chun, Sung-Yong
    • Journal of the Korean institute of surface engineering
    • /
    • v.53 no.2
    • /
    • pp.67-71
    • /
    • 2020
  • For deposition technology using plasma, it plays an important role in improving film deposited with high ionization rate through high density plasma. Various deposition methods such as high-power impulse magnetron sputtering and ion-beam sputtering have been developed for physical vapor deposition technology and are still being studied. In this study, it is intended to control plasma using inductive coupled plasma (ICP) antennas and use properties to improve the properties of Hafnium nitride (HfN) films using ICP assisted magnetron sputtering (ICPMS). HfN film deposited using ICPMS showed a finer grain sizes, denser microstructure and better mechanical properties as ICP power increases. The best mechanical properties such as nanoindentation hardness of 47 GPa and Young's modulus of 401 GPa was obtained from HfN film deposited using ICPMS at ICP power of 200 W.

Relationship between inductively coupled plasma and crystal structure, mechanical and electrical properties of MoN coatings (유도결합 플라즈마 파워에 따른 MoN 코팅막의 결정구조 및 기계·전기적 특성 변화)

  • Jang, Hoon;Chun, Sung-Yong
    • Journal of the Korean institute of surface engineering
    • /
    • v.55 no.2
    • /
    • pp.77-83
    • /
    • 2022
  • Nanocrystalline MoN coatings were prepared by inductively coupled plasma magnetron sputtering (ICPMS) changing the plasma power from 0 W to 200 W. The properties of the coatings were analyzed by x-ray diffraction, field emission scanning electron microscopy, atomic force microscopy, nanoindentation tester and semiconductor characterization system. As the ICP power increases, the crystal structure of the MoN coatings changed from a mixed phase of γ-Mo2N and α-Mo to a single phase γ-Mo2N. MoN coatings deposited by ICPMS at 200 W showed the most compact microstructure with the highest nanoindentation hardness of 27.1 GPa. The electrical resistivity of the coatings decreased from 691.6 μΩ cm to 325.9 μΩ cm as the ICP power increased.

Analysis of Selenium in Grain with ORC Collision-Removal of Br Interference using Mathematical Calibration (ORC ICPMS에서의 곡류중의 셀레늄 분석-수학적 보정을 이용한 Br의 간섭제거)

  • Cho, Heon-Hong;Pak, Yong-Nam
    • Journal of the Korean Chemical Society
    • /
    • v.55 no.3
    • /
    • pp.472-477
    • /
    • 2011
  • The concentration of selenium in grain samples was determined using isotope dilution method in ORC-ICPMS. The experimental conditions were optimized to $H_2$ mode and the flow rate was $4.0\;mL\;min^{-1}$. ORC in $H_2$ mode proved to eliminate most of polyatomic interferences except $BrH^+$ when Br is present in sample matrix. Chemical removal of Br was very difficult and the mathematical correction was successfully employed. The fraction of $BrH^+$ generated from Br at the current experimental condition was 14.1%. The signal on m/z 82 was corrected and calculated for isotope dilution. The analytical reliability of the propose method was successfully evaluated by analyzing the certified standard reference material NIST SRM 1566 and 1567. The method was applied to real samples and the results are $0.034{\pm}0.001\;{\mu}g\;g^{-1}$ for white rice, $0.059{\pm}0.002_5\;{\mu}g\;g^{-1}$ for brown rice, $0.029{\pm}0.001_4\;{\mu}g\;g^{-1}$ for black rice, and $0.034{\pm}0.002\;{\mu}g \;g^{-1}$ for barley. The detection limits ($3\sigma$) for Se was $0.012\;ng\;g^{-1}$.

LA-MC-ICPMS U-Pb Ages of the Detrital Zircons from the Baengnyeong Group: Implications of the Dominance of the Mesoproterozoic Zircons (신원생대 백령층군 사암의 쇄설성 저어콘 LA-MC-ICPMS U-Pb 연령: 중원생대 집중연령의 의미)

  • Kim, Myoung Jung;Park, Jeong-Woong;Lee, Tae-Ho;Song, Yong-Sun;Park, Kye-Hun
    • Economic and Environmental Geology
    • /
    • v.49 no.6
    • /
    • pp.433-444
    • /
    • 2016
  • The U-Pb ages of detrital zircons from the Baengnyeong Group were determined by LA-MC-ICPMS, yielding condensed age population in the range from 1100 Ma to 1800 Ma corresponding to the Mesoproterozoic to late Paleoproterozoic. However, detrital zircons of ca.1800-2000 Ma or ca. 2500 Ma ages, which appear frequently in the lower Paleozoic Joseon Supergroup and the upper Paleozoic Pyeongan Supergroup are lacking in the Baengnyeong Group. Such characteristics are identical to those of the Neoproterozoic Sangwon System of North Korea, suggesting that the Baengnyeong Group might be the southwestern extension of the Sangwon System. The zircon age distribution patterns from the Impi Formation in the Gunsan area closely resemble those of the Baengnyeong Group, implying possible correlation of the Impi Formation to the Sangwon System. Therefore, the Mesoproterozoic detrital zircons reported from the Hwangangni Formation of the Okcheon Metamorphic Belt and the Myobong, Sambangsan and Sesong Formations of the Taebaeksan Basin might be derived from the provenances within the Korean peninsula.

A Preliminary Study for a Glass Geological Reference Material Using Obsidian (흑요암을 이용한 유리 지질 표준물질에 대한 예비 연구)

  • Jin, Mi-Eun;Jwa, Yong-Joo;Park, Sang Gu;Sun, Gwang Min
    • Korean Journal of Mineralogy and Petrology
    • /
    • v.33 no.1
    • /
    • pp.65-71
    • /
    • 2020
  • Glass reference materials have been essentially used for precise geochemistry analytical techniques. In order to make up for the drawback of synthetic glass reference materials, which have the high uncertainty caused by the difference in composition of natural rocks, we introduce a glass geostandard using natural glass. The NK-B1G sample, which comes from the Baekdusan obsidian, is a natural glassy rock that contains only few crystals such as microlites or inclusions. We examined the feasibility of the sample as a reference material for microanalysis like EPMA or LA-ICPMS.

Determination of Isotopic Ratios for Ca in Inductively Coupled Plasma Mass Spectrometry (ICPMS) by Removing Water Related Molecules

  • 박용남;S. R. Koirtyohann
    • Bulletin of the Korean Chemical Society
    • /
    • v.18 no.11
    • /
    • pp.1172-1175
    • /
    • 1997
  • Calcium isotopic ratios are precisely measured by removing isobaric interferences originated from water in the plasma. Liquid Ar cryogenic trap combined with membrane desolvator could eliminate backgrounds at m/z 42 and 44. Slow drift of ICP-MS is corrected by the frequent running of the standards. It is found necessary to separate Ca from the sample matrix using Ca oxalate precipitation technique. Currently, the RSD is 0.5-1.0% for 2 minutes of measurement but is expected to be improved if the measurement time is increased. The technique was applied to 42Ca enriched baby fecal samples and successfully determined 42Ca/44Ca ratio changes.