• Title/Summary/Keyword: ICAM-1 expression

Search Result 178, Processing Time 0.028 seconds

The Effect of Phellinus Linteus Cheonghyeol Plus(PLCP) on Antioxidant Activity and Inhibition of Inflammatory Factor Expression Associated with Dyslipidemia in HUVEC (상황청혈플러스(PLCP)가 HUVEC에서 이상지질혈증 관련 항산화 작용 및 염증인자 발현 억제에 미치는 영향)

  • Won, Seo-young;Yoo, Ho-ryong;Seol, In-chan;Kim, Yoon-sik
    • The Journal of Korean Medicine
    • /
    • v.41 no.2
    • /
    • pp.43-57
    • /
    • 2020
  • Objectives: The purpose of this study was to investigate the effect of Phellinus linteus cheonghyeol plus (PLCP) on antioxidant and inhibition of inflammatory factor expression associated with dyslipidemia in HUVEC. Methods: The scavenging activity of DPPH and ABTS radical of PLCP was measured in HUVEC. The expression levels of NF-κB, p-IκBα, ERK, JNK, and p38 proteins were measured after treating with TNF-α in HUVEC. The expression levels of MCP-1, ICAM-1, and VCAM-1 mRNA and biomarkers were measured after treatment with TNF-α in HUVEC Results: 1. PLCP increases DPPH and ABTS radical scavenging activity in a concentration dependent manner. 2. PLCP significantly decreased the concentration of NF-κB, p-IκBα, ERK, JNK protein compared to the control at concentrations of 100 ㎍/㎖ or more, and significantly decreased concentration of p38 protein at all concentrations. 3. PLCP significantly decreased MCP-1 mRNA expression levels at 100㎍/㎖ or more compared to the control. ICAM-1 and VCAM-1 mRNA expression levels were significantly reduced at all concentrations compared to the control. MCP-1, ICAM-1 protein expression levels were significantly reduced compared to the control at concentrations of 100 ㎍/㎖ or more, and VCAM-1 protein expression levels were reduced at all concentrations. Conclusions: These results suggest that PLCP has an antioxidant effect, and it has been experimentally confirmed that it can prevent or inhibit inflammatory diseases caused by dyslipidemia due to its inhibitory effect on inflammation-related factors in HUVEC.

The Effect of Acanthopanax sessiliflorum Cheonghyeol Plus on NF-κB and MAPKs Signaling and Vascular Attachment Factors (오가피청혈플러스가 NF-κB 및 MAPKs 신호전달체계와 혈관부착인자 등에 미치는 영향)

  • Lee, Ji-won;Choi, Gyu-cheol;Bae, Ji-eun;Yoo, Ho-ryong;Kim, Yoon-sik;Seol, In-chan
    • The Journal of Internal Korean Medicine
    • /
    • v.41 no.6
    • /
    • pp.967-983
    • /
    • 2020
  • Objective: This study was performed to investigate the effect of Acanthopanax sessiliflorum Cheonghyeol plus (ASCP) on NF-κB and MAPK signaling and vascular adhesion factors associated with dyslipidemia in human umbilical vein endothelial cells (HUVECs). Methods: We measured the scavenging activity of DPPH radical and ABTS radical by ASCP in HUVECs. We measured the protein expression levels of NF-κB, IκBα, ERK, JNK, and p38 after treatment of HUVECs with TNF-α. We measured the expression levels of MCP-1, ICAM-1, and VCAM-1 mRNA and of MCP-1, ICAM-1, and VCAM-1 biomarkers after treatment of HUVECs with TNF-α. Results: The DPPH and ABTS radical scavenging activity of ASCP increased in a concentration-dependent manner. NF-κB, IκB, ERK, p38 protein expression levels decreased following ASCP treatment at all concentrations compared to untreated control HUVECs. JNK protein expression levels decreased in ASCP-treated HUVECs compared to untreated controls at concentrations of 100 ㎍/mL. MCP-1 mRNA expression level decreased with ASCP treatment ≥200 ㎍/mL compared to the control. ICAM-1 and VCAM-1 mRNA expression levels decreased at all concentrations compared to the control. MCP-1 protein expression level was reduced compared to the control at concentrations ≥200 ㎍/mL, ICAM-1 protein expression level was reduced compared to the control at concentrations ≥100 ㎍/mL, and VCAM-1 protein expression level was reduced at all concentrations. Conclusions: These results suggest that ASCP has an antioxidative and hypolipidemic effect and that ASCP could treat and prevent dyslipidemia, atherosclerosis, and cardio-cerebrovascular diseases.

Identification of Endothelial Specific Region in the Intracellular Adhesion Molecule-2 (ICAM2) Promoter of Miniature Pig

  • Jang, Hoon;Jang, Won-Gu;Kim, Dong Un;Kim, Eun-Jung;Hwang, Sung Soo;Oh, Keon Bong;Lee, Jeong-Woong
    • Reproductive and Developmental Biology
    • /
    • v.36 no.3
    • /
    • pp.207-212
    • /
    • 2012
  • The shortage of human organs for transplantation has induced the research on the possibility of using animal as porcine. However, pig to human transplantation as known as xeno-transplantation has major problem as immunorejection. Recently, the solutions of pig to human xenotransplantation are commonly mentioned as having a genetically modification which include alpha 1, 3 galatosyl transferase knockout (GTKO) and immune-suppressing gene transgenic model. Unfortunately, the expression level of transgenic gene is very low activity. Therefore, development of gene overexpression system is the most urgent issue. Also, the tissue specific overexpression system is very important. Because most blood vessels are endothelial cells, establishment of the endothelial-specific promoter is attractive candidates for the introduction of suppressing immunorejection. In this study, we focus the ICAM2 promoter which has endothelial-specific regulatory region. To detect the regulatory region of ICAM2 promoter, we cloned 3.7 kb size mini-pig ICAM2 promoter. We conduct serial deletion of 5' flanking region of mini-pig ICAM2 promoter then selected promoter size as 1 kb, 1.5 kb, 2 kb, 2.5 kb, and 3 kb. To analyze promoter activity, luciferase assay system was conducted among these vectors and compare endothelial activity with epithelial cells. The reporter gene assay revealed that ICAM2 promoter has critical activity in endothelial cells (CPAE) and 1 kb size of ICAM2 promoter activity was significantly increased. Taken together, our studies suggest that mini-pig ICMA2 promoter is endothelial cell specific overexpression promoter and among above all size of promoters, 1 kb size promoter is optimal candidate to overcome the vascular immunorejection in pig to human xenotransplantation.

Genipin Selectively Inhibits TNF-${\alpha}$-activated VCAM-1 But Not ICAM-1 Expression by Upregulation of PPAR-${\gamma}$ in Human Endothelial Cells

  • Jung, Seok-Hwa;Mun, Lidiya;Kim, Hye-Jung;Seo, Han-Geuk;Lee, Jae-Heun;Kwak, Jong-Hwan;Lee, Dong-Ung;Chang, Ki-Churl
    • The Korean Journal of Physiology and Pharmacology
    • /
    • v.15 no.3
    • /
    • pp.157-162
    • /
    • 2011
  • Vascular inflammation process has been suggested to be an important risk factor in the development of atherosclerosis. Recently we reported that induction of peroxisome proliferator-activated receptor-${\gamma}$ (PPAR-${\gamma}$) selectively inhibits vascular cell adhesion molecule-1 (VCAM-1) but not intercellular cell adhesion molecule-1 (ICAM-1) in tumor necrosis factor (TNF)-${\alpha}$-activated human umbilical vein endothelial cells (HUVEC). In this study, we investigated whether genipin inhibits expression of cellular adhesion molecules, which is relevant to inflammation. Pretreatment with genipin reduced reactive oxygen species (ROS) production and expression of VCAM-1, but not ICAM-1 in TNF-${\alpha}$-activated HUVEC. Genipin dose- and time-dependently increased PPAR-${\gamma}$ expression and inhibited TNF-${\alpha}$-induced phosphorylation of Akt and PKC with different degrees. Finally, genipin prevented TNF-${\alpha}$-induced adhesion of U937 monocytic cells to HUVEC. Taken together, these results indicate that upregualtion of PPAR-${\gamma}$ by genipin selectively inhibits TNF-${\alpha}$-induced expression of VCAM-1, in which regulation of Akt and/or PKC play a key role. We concluded that genipin can be used for the treatment of cardiovascular disorders such as atherosclerosis.

Effects of Direct Cell Contact Between Monocytes and Fibroblasts on the Interleukin-6 Production and Cell Proliferation of Human Gingival and Peri - odontal Ligament Fibroblasts (치은섬유아세포와 치주인대섬유아세포의 interleukin-6 분비 및 세포성장에 미치는 단핵구세포주와 섬유아세포의 세포간 접촉작용)

  • Kim, Soo-Ah;Lee, Ho;Kim, Hyung-Seop;Oh, Kwi-Ok
    • Journal of Periodontal and Implant Science
    • /
    • v.29 no.4
    • /
    • pp.803-823
    • /
    • 1999
  • In order to reveal immunopathogenesis of periodontal tissue destruction, it is important to clarify the molecular mechanism of trafficking and retention of activated leukocytes, including monocytes/macrophages. Gingival fibroblasts may be involved in the regulation of inflammatory cell accumulation in the extravascular periodontal connective tissues via cytokine production and surface expression of adhesion molecules. In this study, it was investigated the molecular basis for the adhesive interactions between monocytes and fibroblasts such as peri-odontal ligament fibroblast(PDLF), human gingival fibroblast(HGF), and human dermal fibroblast(HDF). First, it was examined the evidence whether monocyte-fibroblast cell contact may cause signal transduction in fibroblasts. Being directly in contact with fixed human monocyte cell line THP-1, or U937, upregulation of IL-6 production, $TNF-{\alpha}$ mRNA expression and increased cell proliferation could be seen for fibroblasts. IL-6 production induced by monocyte- fibroblast coculture were further increased when fibroblasts had been pretreated with $IFN-{\gamma}$ or $IL-1{\beta}$ , and monocytes with LPS. Next, it was examined the expression of ICAM-1 which has been known to be involved in accumulation and activation of leukocytes in inflammatory diseases such as periodontitis. ICAM-1 was upregulated up to 10-fold on PDLF, HGF, and HDF by exposure to $IFN-{\gamma}$ or $IL-1{\beta}$. Furthermore, anti-ICAM-1 monoclonal antibody clearly blocked cocultureinduced IL-6 production by fibroblasts, suggesting that $ICAM-1/{\beta}_2$integrin pathway is involved in periodontal fibroblastmonocyte interaction. Overall, these findings provide evidence that periodontal fibroblasts could be involved in the accumulation and retention of monocytes/macrophages in periodontal inflammatory lesion at least in part by ICAM-1 expression. In addition, periodontal fibroblast-monocyte interaction could cause activation signals in fibroblasts intracellularly which result in cytokine production and cell proliferation. Thus, periodontal fibroblasts are speculated to play an important role in immunoregulation and tissue destruction in chronic periodontal diseases by interaction with monocytes/macrophages.

  • PDF

Antigenicity of Fetal Calf Serum as Preserving Solution for Aortic Allograft (동종동맥판 보존용액중 우혈청의 항원효과에 관한 연구)

  • 임창영
    • Journal of Chest Surgery
    • /
    • v.29 no.12
    • /
    • pp.1293-1298
    • /
    • 1996
  • A series of animal experiments has been carried out to investigate the potential antigenicity of the FCS (Fetal Calf Serum) which is commonly used to enhance viability of preserved aortic allograft. Aorti allografts were processed using nutrient media without FCS(control group) or with 10% FCS(study group). After 14 days of 4$^{\circ}C$ cold storage and cryopreservation, antigenic expression of allograft rondothelial cells were studied using immunohistochemical study. To determine antigenicity, level of Anti-MHC class I Antibody, anti-MHC class II antibody and anti-lCAM 1 antibody were measured. There were no stAtistically significant differences in all antigenic expression between control group and study group(p=0. 524 in MHC class I expression, p=0.897 In MHC class II expression, p=0.1305 in ICAM 1 expression). With this result, antigenicity provoking effect of FCS could not be proven. Thus, FCS may not be eliminated from the nutrient media for preservation of aortic allograft due to its proven benefit of cell viability enhancement.

  • PDF

Selection of Flavonoids Inhibiting Expression of Cell Adhesion Molecules Induced by Tumor Necrosis Factor- a in Human Vascular Endothelial Cells (종양괴사인자에 의하여 유도된 혈관내피세포의 Cell Adhesion Molecules 발현을 억제시키는 플라보노이드 선별)

  • 최정숙;최연정;박성희;이용진;강영희
    • Journal of the Korean Society of Food Science and Nutrition
    • /
    • v.31 no.6
    • /
    • pp.1134-1141
    • /
    • 2002
  • Adhesion of leukocytes to the activated vascular endothelium and their subsequent recruitment/migration into the artery wall are key features in the pathogenesis of atherosclerosis and inflammatory diseases. These features have been mediated by cell adhesion molecules including vascular cell adhesion molecule-1 (VCAM-1) and in tracellular cell adhesion molecule-1 (ICAM-1). This study examined whether flavonoids inhibit the pro-inflammatory cytokine TNF-$\alpha$-induced monocyte adhesion via a modulation of the protein expression of VCAM-1 and ICAM-1 of human umbilical vein endothelial cells (HUVECs). TNF-$\alpha$ markedly increased the adhesion of THP-1 monocytes to endothelial cells and induced the expression of VCAM-1, ICAM-1 and E-selectin proteins in HUVECs. Micromolar concentrations of the flavones luteolin and apigenin and the flavonol quercetin near completely blocked the monocyte adhesion to the activated endothelial cells and the induction of these adhesion molecules. However, equimicromolar catechins of (-)epigallocatechin gallate and (+)catechin, the flavonol myr- icetin and the flavanones of naringin and hesperidin had no effect on TNF-$\alpha$-activated monocyte adhesion. (-)Epigallocatechin gallate, (+) catechin, and naringin did not attenuate the TNF-$\alpha$ induction of these adhesion molecules. Furthermore, culture with luteolin and apigenin strongly blocked the expression of TNF-$\alpha$-induced VCAM-1 mRNA and modestly attenuated ICAM-1 mRNA. Quercetin modestly decreased the TNF-$\alpha$-activated VCAM-1 and ICAM-1 mRNAs. These results demonstrate that flavonoids classified as flavones and flavonols may inhibit monocyte adhesion to the TNF-$\alpha$-activated endothelium, most likely due to a blockade of expression of functional adhesion molecules down-regulated at the transcriptional level, indicating a definite linkage between the chemical structure of flavonoids and the expression of cell adhesion molecules. Furthermore, the antiathero-genic feature of flavonoids appears to be independent of their antioxidant activity.

Functional Analysis of Fibroblastic Reticular Cells Derived from Mouse Lymph Node via Bidirectional Crosstalk with T Cells (T세포와 양방향 작용을 통한 마우스 림프절로부터 분리된 fibroblastic reticular cell의 기능적 분석)

  • Park, Sung Hee;Lee, Jong-Hwan
    • Journal of Life Science
    • /
    • v.23 no.10
    • /
    • pp.1199-1208
    • /
    • 2013
  • Fibroblastic reticular cells (FRCs) form the structural backbone of the T zone provide a guidance path for immigrating T cells in the lymph node (LN). FRCs may contribute directly to developing T-cell biology in the LN and allow analyses of fundamental aspects of FRC biology related to T cells. FRCs inhibited T-cell apoptosis, and FRC culture supernatants strongly induced the expression of Bcl-xL in T cells against doxorubicin. Coculture of FRC and T cells resulted in rearrangements of the actin cytoskeleton, as well as global changes in the morphology of the FRCs. In addition, when cocultured, the T cells adhered to the FRC monolayer, and the membrane intercellular adhesion molecule (ICAM)-1 was slightly increased by day-dependent manner. In contrast, the expression of soluble ICAM-1 was dramatically increased in a day-dependent manner. Several chemokines, such as CCL5, CXCL1, CXCL5, CXCL16, CCL8, CXCL13, and ICAM-1, and MMPs were expressed in FRCs sensed by tumor necrosis factor (TNF) families. Nuclear factor kappa B ($NF{\kappa}B$)-RelA of the $NF{\kappa}B$ canonical pathway was translocated into FRC nuclear by $TNF{\alpha}$. In contrast, p52 proteolyzed from p100, a counterpart of RelB of the noncanonical $NF{\kappa}B$ pathway, accumulated in the peripheral FRC nucleus by agonistic anti-$LT{\beta}R$ antibody. In summary, we propose a model in which FRCs engage in bidirectional crosstalk to increase the efficiency of T-cell biology. This cooperative feedback loop may help to maintain tissue integrity and function during immune responses.

Cirsium japonicum var. Maackii Extract Suppress VCAM-1 and ICAM-1 Expression in TNF-α-treated Human Vascular Endothelial Cells by Blocking NF-κB Activation (인간 혈관 내피세포에서 NF-κB 억제를 통한 엉겅퀴 추출물의 VCAM-1 및 ICAM-1 발현 억제효과)

  • Jae Young Shin;Byoung Ok Cho;Ji Hyeon Park;Eun Seo Kang;Jae Suk Sim;Dong Jun Sim;Seon Il Jang
    • Korean Journal of Pharmacognosy
    • /
    • v.54 no.1
    • /
    • pp.21-26
    • /
    • 2023
  • Cirsium japonicum var. maackii is a traditional Korean wild perennial herb used to treat blood circulation, high blood pressure, inflammation, diabetes, and kidney damage. However, it is not known whether C. japonicum var. maackii directly improves endothelial dysfunction. In this study, the effect of C. japonicum var. maackii (CJE) on tumor necrosis factor (TNF)-α-induced vascular inflammation was investigated in vitro using human umbilical vein endothelial cells (HUVEC). As a result, CJE inhibited the production of VCAM-1, ICAM-1 and ROS increased by TNF-α in HUVECs. In addition, treatment with CJE attenuated IκB phosphorylation and translocation of NF-κB to the nucleus. These results suggest that CJE can suppress TNFα-induced adhesion molecule expression by blocking NF-κB signaling and inhibiting ROS generation. The results of this study show that CJE has the potential to be used to treat and prevent inflammation associated with endothelial cell damage.

Inhibitory effect of the extract of Catalpa ovata G. Don. on endothelial adhesion molecule expression (개오동나무 추출물의 내피세포 부착분자 발현 억제 효과)

  • Choi, Byung-Min;Chong, Myong-Soo;Song, Ho-Joon
    • The Korea Journal of Herbology
    • /
    • v.22 no.4
    • /
    • pp.137-143
    • /
    • 2007
  • Objectives : Catalpa ovata G. Don (Bignoniaceae) has been shown to possess a variety of pharmacological activities. However, the effect of Catalpa ovata G. Don on endothelial adhesion molecule expression has not been reported. Methods : To examine the effect of Catalpa ovata G. Don on the expression of adhesion molecules in human umbilical vein endothelial cells (HUVECs) stimulated with tumor necrosis factor-${\alpha}$ (TNF-${\alpha}$), we used various methods such as Western blot analysis, reverse tranascription-polymerase chain reaction (RT-PCR), and luciferase activity assay. Results : 1. The extract of Catalpa ovata G. Don inhibited the expression of intracellular adhesion molecule-1 (ICAM-1) and vascular cell adhesion molecule-1 (VCAM-1) in HUVECs stimulated with TNF-${\alpha}$. 2. The extract of Catalpa ovata G. Don reduced TNF-${\alpha}$-induced adhesion of leukocytes to HUVECs. 3. In addition, The extract of Catalpa ovata G. Don inhibited the promoter activities of ICAM-1 and VCAM-1. Conclusions : These results that Catalpa ovata G. Don may be beneficial in the treatment of inflammatory such as atherosclerosis.

  • PDF