• Title/Summary/Keyword: IAA (indole acetic acid)

Search Result 176, Processing Time 0.022 seconds

Callus Induction and Increase in Anti-Inflammatory Activity by Treatment of Methyl Jasmonate in Adenium obesum (석화의 캘러스 유도 및 메틸 자스모네이트 처리에 의한 항염증 활성 증진)

  • Lee, Da Young;Min, Jin Woo;Joo, Gwang Sik;Kang, Hee Cheol
    • Korean Journal of Medicinal Crop Science
    • /
    • v.25 no.2
    • /
    • pp.95-101
    • /
    • 2017
  • Background: Callus cultivation has the advantage of producing a large amount of tissue of a plant in a laboratory regardless of the environment, for extracting an active substance. In the present study, callus formation was induced in the leaves of the succulent plant Adenium obesum (Forssk.) Roem & Schult. After callus cultivation, anti-inflammatory activity tests were conducted, because leaves and stems of A. obesum have been reported to possess biological activity. Methods and Results: In order to induce callus formation, various concentrations of plant growth factors, such as kinetin, naphtha-leneacetic acid (NAA), 6-benzyladenine (BA), and indole-3-acetic acid (IAA) were added to MS solid medium. The maximum callus proliferation was induced by mixed medium consisting of NAA ($2mg/{\ell}$) and BA ($1mg/{\ell}$). In addition, an elicitor was added to the medium under optimal conditions for initiating suspension culture. After suspension culturing, the activities of the callus extracts were compared and analyzed. The cytotoxicity and anti-inflammatory activity tests revealed that the anti-inflammatory activity of the callus extract and the content of phenolic compounds were elevated after treatment of the callus culture with the elicitior. Conclusions: A. obesum callus might be considered as potential source of biologically active anti-inflammatory material.

Isolation, Characterization, and Use for Plant Growth Promotion Under Salt Stress, of ACC Deaminase-Producing Halotolerant Bacteria Derived from Coastal Soil

  • Siddikee, M.A.;Chauhan, P.S.;Anandham, R.;Han, Gwang-Hyun;Sa, Tong-Min
    • Journal of Microbiology and Biotechnology
    • /
    • v.20 no.11
    • /
    • pp.1577-1584
    • /
    • 2010
  • In total, 140 halotolerant bacterial strains were isolated from both the soil of barren fields and the rhizosphere of six naturally growing halophytic plants in the vicinity of the Yellow Sea, near the city of Incheon in the Republic of Korea. All of these strains were characterized for multiple plant growth promoting traits, such as the production of indole acetic acid (IAA), nitrogen fixation, phosphorus (P) and zinc (Zn) solubilization, thiosulfate ($S_2O_3$) oxidation, the production of ammonia ($NH_3$), and the production of extracellular hydrolytic enzymes such as protease, chitinase, pectinase, cellulase, and lipase under in vitro conditions. From the original 140 strains tested, on the basis of the latter tests for plant growth promotional activity, 36 were selected for further examination. These 36 halotolerant bacterial strains were then tested for 1-aminocyclopropane-1-carboxylic acid (ACC) deaminase activity. Twenty-five of these were found to be positive, and to be exhibiting significantly varying levels of activity. 16S rRNA gene sequencing analyses of the 36 halotolerant strains showed that they belong to 10 different bacterial genera: Bacillus, Brevibacterium, Planococcus, Zhihengliuella, Halomonas, Exiguobacterium, Oceanimonas, Corynebacterium, Arthrobacter, and Micrococcus. Inoculation of the 14 halotolerant bacterial strains to ameliorate salt stress (150 mM NaCl) in canola plants produced an increase in root length of between 5.2% and 47.8%, and dry weight of between 16.2% and 43%, in comparison with the uninoculated positive controls. In particular, three of the bacteria, Brevibacterium epidermidis RS15, Micrococcus yunnanensis RS222, and Bacillus aryabhattai RS341, all showed more than 40% increase in root elongation and dry weight when compared with uninoculated salt-stressed canola seedlings. These results indicate that certain halotolerant bacteria, isolated from coastal soils, have a real potential to enhance plant growth under saline stress, through the reduction of ethylene production via ACC deaminase activity.

Efficient Callus Induction and Plant Regeneration from Immature and Mature Embryo Culture of Korean Wheat Genotypes

  • Lee, Byung-Moo;Moon, Jung-Hun;Lee, Sang-Kyu;Kim, Kyung-Hee;Kang, Moon-Seok;Heo, Hwa-Young;Kwon, Young-Up;Nam, Jung-Hyun;Seo, Yong-Weon
    • KOREAN JOURNAL OF CROP SCIENCE
    • /
    • v.48 no.1
    • /
    • pp.38-43
    • /
    • 2003
  • Immature and mature embryos of 18 Korean wheat genotypes were cultured in vitro to develop an efficient method of callus formation and plant regeneration, and to compare the responses of both embryo cultures. Immature and mature embryos were placed on a solid agar medium containing the MS salts and vitamins, 30g/l maltose, 2 mg/l 2,4-dichlorophenoxyacetic acid (2,4-D), and amino acids. The developed calli were maintained on regeneration medium containing MS salts and B5 vitamins, 20 g/l sucrose, and the combination of two plant growth regulators, 6-benzylaminopurine (BAP) and indole-3-acetic acid (IAA). Immature embryos in most genotypes showed high efficiency of callus induction except three genotypes; Eunpamil, Chunggemil, and Namhaemil, and significant differences among the genotypes. Plant regeneration of calli induced from immature embryos showed high efficiency in Geurumil (56.5%), Tapdongmil (50.5%), Gobunmil (45.5%), and Urimil(42.2%). The analysis of variance showed significant differences for regeneration frequency among the genotypes. Mature embryos showed low callus induction frequency compared with that in immature embryos, and significant differences among the genotypes. Plant regeneration of calli induced from mature embryos showed high efficiency in Keumkangmil (33.33%), Tapdongmil(28.13%), and Geurumil (27.78%). The analysis of variance showed significant differences for plant regeneration frequency among the genotypes.

Reduction effects of N-acetyl-L-cysteine, L-glutathione, and indole-3-acetic acid on phytotoxicity generated by methyl bromide fumigation- in a model plant Arabidopsis thaliana (모델식물 애기장대에 대한 훈증제 메틸브로마이드의 약해발생 및 N-acetyl-L-cysteine, L-glutathione, indole-3-acetic acid의 약해억제 효과)

  • Kim, Kyeongnam;Kim, Chaeeun;Park, Jungeun;Yoo, Jinsung;Kim, Woosung;Jeon, Hwang-Ju;Kim, Jun-Ran;Lee, Sung-Eun
    • Korean Journal of Environmental Biology
    • /
    • v.39 no.3
    • /
    • pp.354-361
    • /
    • 2021
  • Understanding the phytotoxic mechanism of methyl bromide (MB), an essential fumigant during the quarantine and pre-shipment process, is urgently needed to ensure its proper use and reduce international economic losses. In a previous study, two main MB-induced toxic mechanisms such as reactive oxygen species (ROS) and auxin distribution were selected by analyzing transcriptomic analysis. In the study, a 3-week-old A. thaliana was supplied with 1 mM ROS scavengers [N-acetyl-L-cysteine (NAC) or L-glutathione (GSH)] and 1µM indole-3-acetic acid(IAA) three times every 12 h, and visual and gene expression assessments were performed to evaluate the reduction in phytotoxicity by supplements. Phytotoxic effects on the MB-4h exposed group were decreased with GSH application compared to the other single supplements and a combination of supplements at 7 days post fumigation. Among these supplements, GSH at a concentration of 1, 2, and 5mM was suppled to A. thaliana with MB-fumigation. During a long-term observation of 2 weeks after the fumigation, 5 mM GSH application was the most effective in minimizing MB-induced phytotoxic effects with up-regulation of HSP70 expression and increase in main stem length. These results indicated that ROS was a main key factor of MB-induced phytotoxicity and that GSH can be used as a supplement to reduce the phytotoxicity of MB.

The Effect of IAA on $Colocasia$ $esculenta$'s Growth and Morphogenesis (IAA가 토란의 생장 및 형태 발생에 미치는 영향)

  • Kim, Young-Eun;Lee, Joon-Sang
    • Korean Journal of Environmental Biology
    • /
    • v.29 no.2
    • /
    • pp.92-97
    • /
    • 2011
  • Morphological and physiological differences of $Colocasia$ $esculenta$ were investigated in the cultivation of hydorphonic and soil culture. $C.$ $esculenta$ grown in Hoa.+IAA (indole-acetic acid) showed higher growth activity representing 9%, 32%, 38% and 60% than those of the cultivation of vermiculate, Hoagland solution, soil and water, respectively. In case of $F_v/F_m$ ratio experiments, the value $F_v/F_m$ of $C.$ $esculenta$ cultivated in the water showed 0.55 after 6 weeks. $F_v/F_m$ values of $C.$ $esculenta$ cultivated in Hoagland+IAA, vermiculate and soil were between 0.84 and 0.80 indicating $F_v/F_m$ values were about 45% higher than that of $C.$ $esculenta$ cultivated in the water. Diffusion resistance was 45~35% lower in $C.$ $esculenta$ grown in Hoa.+IAA solution than that of $C.$ $esculenta$ grown in water only after 5 and 6 weeks. Therefore, the high standing levels of the growth rate, fluorescence activity and transpiration rate were Hoa.+IAA, vermiculate, Hoagland, soil and water. The distinct morphological differences of $C.$ $esculenta$ cultivated in hydorphonic and soil culture were the appearance of the seed corm and root hair. The development of seed corm was well established in soil culture but the corm in hydorphonic was slowly hydrolyzed and then disappeared. The fibrous root systems of hydorphonic were very well distinguishable compared with that in soil culture. Outstanding results of this experiment were appeared in $C.$ $esculenta$ which was cultivated in the field provided with enough mineral nutrition, organic fertilizers and compound fertilizers. The most height taros were almost 2m and the numbers of seed corm were 30~40 after 7 months.

The Endophytic Bacteria Bacillus velezensis Lle-9, Isolated from Lilium leucanthum, Harbors Antifungal Activity and Plant Growth-Promoting Effects

  • Khan, Mohammad Sayyar;Gao, Junlian;Chen, Xuqing;Zhang, Mingfang;Yang, Fengping;Du, Yunpeng;Moe, The Su;Munir, Iqbal;Xue, Jing;Zhang, Xiuhai
    • Journal of Microbiology and Biotechnology
    • /
    • v.30 no.5
    • /
    • pp.668-680
    • /
    • 2020
  • Bacillus velezensis is an important plant growth-promoting rhizobacterium with immense potential in agriculture development. In the present study, Bacillus velezensis Lle-9 was isolated from the bulbs of Lilium leucanthum. The isolated strain showed antifungal activities against plant pathogens like Botryosphaeria dothidea, Fusarium oxysporum, Botrytis cinerea and Fusarium fujikuroi. The highest percentage of growth inhibition i.e., 68.56±2.35% was observed against Fusarium oxysporum followed by 63.12 ± 2.83%, 61.67 ± 3.39% and 55.82 ± 2.76% against Botrytis cinerea, Botryosphaeria dothidea, and Fusarium fujikuroi, respectively. The ethyl acetate fraction revealed a number of bioactive compounds and several were identified as antimicrobial agents such as diketopiperazines, cyclo-peptides, linear peptides, latrunculin A, 5α-hydroxy-6-ketocholesterol, (R)-S-lactoylglutathione, triamterene, rubiadin, moxifloxacin, 9-hydroxy-5Z,7E,11Z,14Z-eicosatetraenoic acid, D-erythro-C18-Sphingosine, citrinin, and 2-arachidonoyllysophosphatidylcholine. The presence of these antimicrobial compounds in the bacterial culture might have contributed to the antifungal activities of the isolated B. velezensis Lle-9. The strain showed plant growth-promoting traits such as production of organic acids, ACC deaminase, indole-3-acetic acid (IAA), siderophores, and nitrogen fixation and phosphate solubilization. IAA production was accelerated with application of exogenous tryptophan concentrations in the medium. Further, the lily plants upon inoculation with Lle-9 exhibited improved vegetative growth, more flowering shoots and longer roots than control plants under greenhouse condition. The isolated B. velezensis strain Lle-9 possessed broad-spectrum antifungal activities and multiple plant growth-promoting traits and thus may play an important role in promoting sustainable agriculture. This strain could be developed and applied in field experiments in order to promote plant growth and control disease pathogens.

Enhancement of Tomato Tolerance to Biotic and Abiotic Stresses by Variovorax sp. PMC12 (Variovorax sp. PMC12 균주에 의한 토마토의 생물학 및 비생물학적 스트레스 저항성 증진)

  • Kim, Hyeon Su;Lee, Shin Ae;Kim, Yiseul;Sang, Mee kyung;Song, Jaekyeong;Chae, Jong-Chan;Weon, Hang-Yeon
    • Research in Plant Disease
    • /
    • v.24 no.3
    • /
    • pp.221-232
    • /
    • 2018
  • Rhizobacteria play important roles in plant growth and health enhancement and render them resistant to not only biotic stresses but also abiotic stresses, such as low/high temperature, drought, and salinity. This study aimed to select plant growth promoting rhizobacteria (PGPR) with the capability to mitigate biotic and abiotic stress effects on tomato plants. We isolated a novel PGPR strain, Variovorax sp. PMC12 from tomato rhizosphere. An in vitro assay indicated that strain PMC12 produced ammonia, indole-3-acetic acid (IAA), siderophore, and 1-aminocyclopropane-1-carboxylic acid (ACC) deaminase, which are well-known traits of PGPR. The aboveground fresh weight was significantly higher in tomato plants treated with strain PMC12 than in non-treated tomato plants under various abiotic stress conditions including salinity, low temperature, and drought. Furthermore, strain PMC12 also enhanced the resistance to bacterial wilt disease caused by Ralstonia solanacearum. Taken together, these results indicated that strain PMC12 is a promising biocontrol agent and a biostimulant to reduce the susceptibility of plants to both abiotic and biotic stresses.

Identification and Characterization of Microbial Community in the Coelomic Fluid of Earthworm (Aporrectodea molleri)

  • Yakkou, Lamia;Houida, Sofia;Dominguez, Jorge;Raouane, Mohammed;Amghar, Souad;Harti, Abdellatif El
    • Microbiology and Biotechnology Letters
    • /
    • v.49 no.3
    • /
    • pp.391-402
    • /
    • 2021
  • Earthworms play an important role in soil fertilization, interacting continually with microorganisms. This study aims to demonstrate the existence of beneficial microorganisms living in the earthworm's immune system, the coelomic fluid. To achieve this goal, a molecular identification technique was performed, using cytochrome c oxidase I (COI) barcoding to identify abundant endogenic earthworms inhabiting the temperate zone of Rabat, Morocco. Then, 16S rDNA and ITS sequencing techniques were adopted for bacteria and fungi, respectively. Biochemical analysis, showed the ability of bacteria to produce characteristic enzymes and utilize substrates. Qualitative screening of plant growth-promoting traits, including nitrogen fixation, phosphate and potassium solubilization, and indole acetic acid (IAA) production, was also performed. The result of mitochondrial COI barcoding allowed the identification of the earthworm species Aporrectodea molleri. Phenotypic and genotypic studies of the sixteen isolated bacteria and the two isolated fungi showed that they belong to the Pseudomonas, Aeromonas, Bacillus, Buttiauxella, Enterobacter, Pantoea, and Raoultella, and the Penicillium genera, respectively. Most of the isolated bacteria in the coelomic fluid showed the ability to produce β-glucosidase, β-glucosaminidase, Glutamyl-β-naphthylamidase, and aminopeptidase enzymes, utilizing substrates like aliphatic thiol, sorbitol, and fatty acid ester. Furthermore, three bacteria were able to fix nitrogen, solubilize phosphate and potassium, and produce IAA. This initial study demonstrated that despite the immune property of earthworms' coelomic fluid, it harbors beneficial microorganisms. Thus, the presence of resistant microorganisms in the earthworm's immune system highlights a possible selection process at the coelomic fluid level.

Plant Growth-Promoting Potential of Endophytic Bacteria Isolated from Roots of Coastal Sand Dune Plants

  • Shin, Dong-Sung;Park, Myung-Soo;Jung, Se-Ra;Lee, Myoung-Sook;Lee, Kang-Hyun;Bae, Kyung-Sook;Kim, Seung-Bum
    • Journal of Microbiology and Biotechnology
    • /
    • v.17 no.8
    • /
    • pp.1361-1368
    • /
    • 2007
  • Endophytic bacteria associated with the roots of coastal sand dune plants were isolated, taxonomically characterized, and tested for their plant growth-promoting activities. Ninety-one endophytic bacterial isolates were collected and assigned to 17 different genera of 6 major bacterial phyla based on partial 16S rDNA sequence analyses. Gammaproteobacteria represented the majority of the isolates (65.9%), and members of Pseudomonas constituted 49.5% of the total isolates. When testing for antagonism towards plant pathogenic fungi, 25 strains were antagonistic towards Rhizoctonia solani, 57 strains were antagonistic towards Pythium ultimum, 53 strains were antagonistic towards Fusarium oxysporum, and 41 strains were antagonistic towards Botrytis cinerea. Seven strains were shown to produce indole acetic acid (IAA), 33 to produce siderophores, 23 to produce protease, 37 to produce pectinase, and 38 to produce chitinase. The broadest spectra of activities were observed among the Pseudomonas strains, indicating outstanding plant growth-promoting potential. The isolates from C. kobomugi and M. sibirica also exhibited good plant growth-promoting potential. The correlations among individual plant growth-promoting activities were examined using phi coefficients, and the resulting data indicated that the production of protease, pectinase, chitinase, and siderophores was highly related.

Effect of RGD Peptide on Ethylene Production from Cultured Carrot Cells (당근 배양세포에서 RGD Peptide가 에틸렌 생성에 미치는 영향)

  • 이준승
    • Journal of Plant Biology
    • /
    • v.36 no.4
    • /
    • pp.391-398
    • /
    • 1993
  • It has been inferred that membrane-ECM (extracellular matrix) interaction in plants may be also mediated by an RGD-dependent recognition system as in animal cells. Effects of RGD peptide on ethylene production was examined in suspension cultured carrot cells. Treatment of the cells with RGD peptide containing RGD (Arg-Gly-Asp) sequence stimulated ethylene production. When RGD peptide was applied to carrot cells treated with 1M, the effect of RGD peptide appeared to be additive. ACC synthase activity in cells pretreated with RGD peptide likewise increased over the control. In an effort to check the sequence specificity of the RGD peptide, cells were treated with substituted RGD peptide, i.e. RGK (Arg-Gly-Lys) and RGE (Arg-Gly-Glu) peptide, respectively. RGK peptide did not stimulate ethylene production but RGE peptide did. The results strongly suggest that the stimulatory effect of RGD peptides on ethylene production may be associated with a physiological phenomenon through a specific recognition between RGD peptide including RGD sequence and their putative plasma membrane receptors.eptors.

  • PDF