• Title/Summary/Keyword: I.Q.

Search Result 1,714, Processing Time 0.035 seconds

Performance of Generalized BER for Hierarchical MPSK Signal (계층적 MPSK 신호에 대한 일반화된 BER 성능)

  • Lee Jae-Yoon;Yoon Dong-Weon;Hyun Kwang-Min;Park Sang-Kyu
    • The Journal of Korean Institute of Communications and Information Sciences
    • /
    • v.31 no.9C
    • /
    • pp.831-839
    • /
    • 2006
  • In this paper, we present an exact and general expression involving two-dimensional Gaussian Q-functions for the bit error rate (BER) of hierarchical MPSK with I/Q phase and amplitude imbalances over an additive white Gaussian noise (AWGN) channel. First we derive a BER expression for the k-th bit of hierarchical 4, 8, 16-PSK signal constellations when Gray code bit mapping is employed. Then, from the derived k-th bit BER expression, we present the exact and general average BER expression for hierarchical MPSK with I/Q phase and amplitude imbalances. This result can readily be applied to numerical evaluation for various cases of practical interest in an I/Q unbalanced hierarchical MPSK system, because the one- and two-dimensional Gaussian Q-functions can be easily and directly computed usinB commonly available mathematical software tools.

LOCAL PERMUTATION POLYNOMIALS OVER FINITE FIELDS

  • Lee, Jung-Bok;Ko, Hyoung-June
    • Communications of the Korean Mathematical Society
    • /
    • v.9 no.3
    • /
    • pp.539-545
    • /
    • 1994
  • Let $q = p^r$, where p is a prime. A polynomial $f(x) \in GF(q)[x]$ is called a permutation polynomial (PP) over GF(q) if the numbers f(a) where $a \in GF(Q)$ are a permutation of the a's. In other words, the equation f(x) = a has a unique solution in GF(q) for each $a \in GF(q)$. More generally, $f(x_1, \cdots, x_n)$ is a PP in n variables if $f(x_1,\cdots,x_n) = \alpha$ has exactly $q^{n-1}$ solutions in $GF(q)^n$ for each $\alpha \in GF(q)$. Mullen ([3], [4], [5]) has studied the concepts of local permutation polynomials (LPP's) over finite fields. A polynomial $f(x_i, x_2, \cdots, x_n) \in GF(q)[x_i, \codts,x_n]$ is called a LPP if for each i = 1,\cdots, n, f(a_i,\cdots,x_n]$ is a PP in $x_i$ for all $a_j \in GF(q), j \neq 1$.Mullen ([3],[4]) found a set of necessary and three variables over GF(q) in order that f be a LPP. As examples, there are 12 LPP's over GF(3) in two indeterminates ; $f(x_1, x_2) = a_{10}x_1 + a_{10}x_2 + a_{00}$ where $a_{10} = 1$ or 2, $a_{01} = 1$ or x, $a_{00} = 0,1$, or 2. There are 24 LPP's over GF(3) of three indeterminates ; $F(x_1, x_2, x_3) = ax_1 + bx_2 +cx_3 +d$ where a,b and c = 1 or 2, d = 0,1, or 2.

  • PDF

PERMEABLE VALUES AND ENERGETIC SETS IN BCK/BCI-ALGEBRAS BASED ON FUZZY POINTS

  • Song, Seok Zun;Kim, Hee Sik;Roh, Eun Hwan;Jun, Young Bae
    • Honam Mathematical Journal
    • /
    • v.41 no.3
    • /
    • pp.581-593
    • /
    • 2019
  • The notions of (${\in}$, ${\in}{\vee}q$)-permeable S-value and (${\in}$, ${\in}{\vee}q$)-permeable I-value are introduced, and related properties are investigated. Relations among (${\in}$, ${\in}{\vee}q$)-fuzzy subalgebra, (${\in}$, ${\in}{\vee}q$)-fuzzy ideal, (strong) lower and (strong) upper level sets, (${\in}$, ${\in}{\vee}q$)-permeable S-value, (${\in}$, ${\in}{\vee}q$)-permeable I-value, S-energetic set, I-energetic set, right stable set and right vanished set are discussed.

A Study on the Phase Diversity and Optimal I/Q Signal Combining Methods on a UHF RFID Receiver (UHF RFID 수신기의 위상 다이버시티 및 최적 I/Q 신호 결합 방법에 관한 연구)

  • Jang, Byung-Jun;Song, Ho-Jun
    • The Journal of Korean Institute of Electromagnetic Engineering and Science
    • /
    • v.19 no.4
    • /
    • pp.442-450
    • /
    • 2008
  • In this paper, the phase diverisity in a direct-conversion receiver for a UHF RFID reader is analyzed and the optimal I/Q signal combining methods is presented with respect to tag modulation. At first, fading characteristics of a single channel receiver is shown to prove the importance of phase diversity due to the phase relationship between the backscattered signal and the local oscillator. And the optimal signal combining methods are presented in order to overcome the signal power reduction due to phase diversity. In case of ASK, the power combining method is presented for the optimal I/Q combining. And the arctangent and principal component combining methods using covariance matrix of I and Q channels are presented for the optimal I/Q combining in case of PSK. In order to analyze the performance of suggested methods, the selection diversity and the optimal combining methods are compared. According to analysis and simulation results, the optimal combining methods have a maximum 3 dB SNR enhancement than selection diversity.

A Study of Multiple Scattering Model by Analytic Method for Southeastern Korea (한반도 남동부지역의 해석적방법에 의한 다중산란모델 연구)

  • Chung, Tae-Woong
    • Geophysics and Geophysical Exploration
    • /
    • v.14 no.3
    • /
    • pp.242-248
    • /
    • 2011
  • By applying analytic method to the uniform model, the intrinsic and scattering quality factor ($Q_i^{-1}$ and $Q_s^{-1}$) was separated for the southeastern part of Korean Peninsula. The Multiple Lapse Time Window Analysis method was used to fit theoretical values with observations obtained 759 earthquake data. While previous study for the Korean Peninsula showed very low $Q_i^{-1}$ and $Q_s^{-1}$ reflecting inactive seismicity, southeastern Korea exhibited relatively high $Q_i^{-1}$ and $Q_s^{-1}$ values interpreted as higher seismicity than the other region in the peninsula.

Evaluation of Uncertainty Importance Measure by Experimental Method in Fault Tree Analysis (결점나무 분석에서 실험적 방법을 이용한 불확실성 중요도 측도의 평가)

  • Cho, Jae-Gyeun
    • Journal of Korea Society of Industrial Information Systems
    • /
    • v.14 no.5
    • /
    • pp.187-195
    • /
    • 2009
  • In a fault tree analysis, an uncertainty importance measure is often used to assess how much uncertainty of the top event probability (Q) is attributable to the uncertainty of a basic event probability ($q_i$), and thus, to identify those basic events whose uncertainties need to be reduced to effectively reduce the uncertainty of Q. For evaluating the measures suggested by many authors which assess a percentage change in the variance V of Q with respect to unit percentage change in the variance $\upsilon_i$ of $q_i$, V and ${\partial}V/{\partial}{\upsilon}_i$ need to be estimated analytically or by Monte Carlo simulation. However, it is very complicated to analytically compute V and ${\partial}V/{\partial}{\upsilon}_i$ for large-sized fault trees, and difficult to estimate them in a robust manner by Monte Carlo simulation. In this paper, we propose a method for experimentally evaluating the measure using a Taguchi orthogonal array. The proposed method is very computationally efficient compared to the method based on Monte Carlo simulation, and provides a stable uncertainty importance of each basic event.

STABILITY OF HAHN DIFFERENCE EQUATIONS IN BANACH ALGEBRAS

  • Abdelkhaliq, Marwa M.;Hamza, Alaa E.
    • Communications of the Korean Mathematical Society
    • /
    • v.33 no.4
    • /
    • pp.1141-1158
    • /
    • 2018
  • Hahn difference operator $D_{q,{\omega}}$ which is defined by $$D_{q,{\omega}}g(t)=\{{\frac{g(gt+{\omega})-g(t)}{t(g-1)+{\omega}}},{\hfill{20}}\text{if }t{\neq}{\theta}:={\frac{\omega}{1-q}},\\g^{\prime}({\theta}),{\hfill{83}}\text{if }t={\theta}$$ received a lot of interest from many researchers due to its applications in constructing families of orthogonal polynomials and in some approximation problems. In this paper, we investigate sufficient conditions for stability of the abstract linear Hahn difference equations of the form $$D_{q,{\omega}}x(t)=A(t)x(t)+f(t),\;t{\in}I$$, and $$D^2{q,{\omega}}x(t)+A(t)D_{q,{\omega}}x(t)+R(t)x(t)=f(t),\;t{\in}I$$, where $A,R:I{\rightarrow}{\mathbb{X}}$, and $f:I{\rightarrow}{\mathbb{X}}$. Here ${\mathbb{X}}$ is a Banach algebra with a unit element e and I is an interval of ${\mathbb{R}}$ containing ${\theta}$.

ON THE NONLINEAR MATRIX EQUATION $X+\sum_{i=1}^{m}A_i^*X^{-q}A_i=Q$(0<q≤1)

  • Yin, Xiaoyan;Wen, Ruiping;Fang, Liang
    • Bulletin of the Korean Mathematical Society
    • /
    • v.51 no.3
    • /
    • pp.739-763
    • /
    • 2014
  • In this paper, the nonlinear matrix equation $$X+\sum_{i=1}^{m}A_i^*X^{-q}A_i=Q(0<q{\leq}1)$$ is investigated. Some necessary conditions and sufficient conditions for the existence of positive definite solutions for the matrix equation are derived. Two iterative methods for the maximal positive definite solution are proposed. A perturbation estimate and an explicit expression for the condition number of the maximal positive definite solution are obtained. The theoretical results are illustrated by numerical examples.

Detection of Copy Number Variation of the KIT Gene in the Landrace Breed using an Quantitative Oligonucleotide Ligation Assay(qOLA) (Quantitative Oligonucleotide Ligation Assay(qOLA)를 이용한 Landrace 품종의 KIT 유전자 반복수 변이 탐지)

  • Seo, B.Y.;Kim, J.H.;Nahm, D.W.;Yoo, C.K.;Lee, S.H.;Lee, J.B.;Lim, H.T.;Jung, E.J.;Cho, I.C.;Heo, K.N.;Jeon, J.T.
    • Journal of Animal Science and Technology
    • /
    • v.49 no.5
    • /
    • pp.559-568
    • /
    • 2007
  • Recently, copy number variations (CNV) of genes or genomic segments have been intensively studied and various analysis methods have been developed. In this study, quantitative oligonucleotide ligation assay (qOLA) was applied to investigate CNV of KIT gene in the Landrace breed. A combined assay using qOLA and pyrosequencing, 6 genotype classes, I1/I1 or I3/i (IBe), I1/I2 or I3/IP, I1/I3, I1/IP or I2/i (IBe), I2/I2and I2/IP, were identified from 44 Landrace pigs. Genotype assignment using grouping features of measurements on a scatter plot showed 100% agreement with those using a statistical assignment by PROC FASTCLUS procedure implemented in the SAS package. Two versions (3100 and 3130) of ABI sequencers gave the same genotyping results, indicating there was no influence on qOLA by different versions of instrument, however, the means of standard deviation and coefficient of variation from the qOLA on a ABI 3130 (2.33 and 4.10) was lower than those from the qOLA on a ABI 3100 (2.67 and 4.81). Effect of proteinase K treatment on the PCR product followed by qOLA was very clear because noise peaks were disappeared and the observed ration fit better to the reference ratio corresponding to each genotype.

A Suitable Cell Search Algorithm Using Separated I/Q Channel Cell Specific Scrambling Codes for Systems with Coexisting Cellular and Hot-Spot Cells in Broadband OFCDM Systems (광대역 OFCDM 시스템에서 셀룰러와 핫-스팟 셀들이 공존할 때 분리 I/Q채널 CSSC를 이용한 셀 탐색 알고리즘)

  • Kim Dae-Yong;Kwon Hyeog-Soong
    • Journal of the Korea Institute of Information and Communication Engineering
    • /
    • v.9 no.8
    • /
    • pp.1649-1655
    • /
    • 2005
  • For systems with coexisting cellular and hot-spot cells in broadband orhogonal frequency and code division multiplexing (OFCDM) systems, a suitable cell search algorithm is proposed fur the common pilot channel (CPICH) in the forward link using separated I/Q channel cell specific codes(CSSC), in which the cellular cell specific scrambling code (CCSSC) is assigned to the in-phase (Q) pilot channel of all cellular cells, and the exclusive hot-spot cell specific scrambling code (HSCSSC) group is assigned to the quadrature (Q) pilot channel of all hot-spot cells. Therefore, the proposed algorithm enables a mobile station (MS) to search quickly for the most desirable hot-spot cell due to reducing the effect of CCSSC, when a MS wants to use a mobile internet. The computer simulation results show that the proposed cell search algorithm can achieve faster cell search time performance, compared to conventional cell search methods.