• Title/Summary/Keyword: I-AFM

Search Result 229, Processing Time 0.027 seconds

Petrochemistry of Granitoids in the Younggwang-Kimje area, Korea (영광-김제 지역 화강암류의 암석화학적 연구)

  • Park, Young-Seog;Kim, Jong-Kyun;Kim, Jin
    • Economic and Environmental Geology
    • /
    • v.34 no.1
    • /
    • pp.55-70
    • /
    • 2001
  • Granitoids in the Younggwang-Kimje area can be divided into two types of granite. One is foliated granite (Cheongup and Kochang foliated granites) developed along the NE-SW direction kwangju fault system and the other is undeformed granite (Kimje and Younggwang granites) developed in the western part of the area. $SiO_2$ content of study area, Younggwang granite is 62.8-74.0%, Kochang foliated granite is 64.5-74.4%, Cheongup foliated granite is 64.5-70.2%, Kimje granite is 63.4-72.0%. The result indicated that these granitoids belong to the intermediate and acidic rock. In Harker's diagram, as $SiO_2$ increases, $Al_2O_3$, $Fe_2O_3$, MgO, CaO, $TiO_2$> $P_2O_{5}$s and MnO decrease, but $K_2O$ increases. In AFM diagram, Younggwang granite, Kochang foliated granite, Cheongup foliated granite and Kimje granite belong to calk-alkaline rock series. And in triangular diagrams of normative Qz-Or-Pl and An-Ab-Or, they are located in granodiorite and granite region. On the co-variation diagrams of trace elements with silica, Ba, Co, Li, Nb, An, Rb elements show increasing patterns. The diagrams of ACF and $Na_2O$ vs. $K_2O$ ratios indicate that granitoids of the study area belong to I-type.

  • PDF

Electric properties of Polymethyl methacrylate(PMMA) Films to thermal treatment Prepared by Spin Coating (회전 도포 공정을 이용한 Polymethyl methacrylate(PMMA) 박막의 열처리에 따른 전기적 특성 평가)

  • Na, Moon-Kyong;Kang, Dong-Pil;Ahn, Myeog-Sang;Myung, In-Hye;Kang, Young-Taec
    • Proceedings of the KIEE Conference
    • /
    • 2005.07c
    • /
    • pp.1924-1926
    • /
    • 2005
  • Poly(methyl methacrylate) (PMMA) is one of the promising representive of polymer gate dielectric for its high resistivity and sutible dielectric constant. PMMA (Mw=96700) films were prepared on p-Si by spin coating method. PMMA were coated compactively and flatly as observes by AFM. MIS(Al/PMMA/p-Si) structure was made and capacitance-voltage (C-V) and current-voltage (I-V) measurements were done with PMMA films for repeated annealing cycles at $100^{\circ}C$. 1-V measured at various delay times $(0{\sim}20sec)$ showed little change and the absence of hysteresis in the I-V characteristics with delay times, which eliminate the possibility of deep traps in the PMMA films. The observed thermal stability, smooth surfaces, dielectric constant, I-V behavior implies PMMA formed by spin coating can be used as an efficient gate dielectric layer in OTFTs.

  • PDF

PACVD of Plasma Polymerized Organic Thin Films and Comparison of their Electrochemical Properties

  • I.S. Bae;S.H. Cho;Kim, M.C.;Y.H. Roh;J.H. Boo
    • Proceedings of the Korean Institute of Surface Engineering Conference
    • /
    • 2003.05a
    • /
    • pp.53-53
    • /
    • 2003
  • Plasma polymerized organic thin films were deposited on Si(100) glass and metal substrates using thiophene and ethylcyclohexane precursors by PECVD method. In order to compare electrochemical properties of the as-grown thin films, the effects of the RF plasma power in the range of 30~100 W. AFM showed that the polymer films with smooth surface and sharp interface could be grown under various deposition conditions. Impedance analyzer was utilized for the determination of I-V curve for leakage current density and C-V for dielectric constants, respectively. To obtain C-V curve, we used a MIM structure of metal(Al)-insulator(plasma polymerized thin film)-metal(Pt) structure. Al as the electrode was evaporated on the thiophene films that grew on Pt coated silicon substrates, and the dielectric constants of the as-grown films were then calculated from C- V data measured at 1MHz. From the electrical property measurements such as I-V and C-V characteristics, the minimum dielectric constant and the best leakage current of thiophene thin films were obtained to be about 3.22 and $1{\;}{\times}10^{-11}{\;}A/cm^2$. However, in case of ethylcyclohexane thin films, the minimum dielectric constant and the best leakage current were obtained to be about 3.11 and $5{\;}{\times}10^{-12}{\;}A/cm^2$.

  • PDF

Deposition of Poly-$Si_{1-x}Ge_x$ Thin Film by RTCVD (RTCVD에 의한 다결정 $Si_{1-x}Ge_x$ 박막 증착)

  • Kim, Jae-Jung;Lee, Seung-Ho;So, Myeong-Gi
    • Korean Journal of Materials Research
    • /
    • v.5 no.6
    • /
    • pp.690-698
    • /
    • 1995
  • The Poly-S $i_{1-x}$G $e_{x}$ thin films were deposited on oxidized Si wafer by RTCVD(rapid thermal chemical vapor deposition) using Si $H_4$and Ge $H_4$, at 450 ~5$50^{\circ}C$. The variation of Ge mole fraction and the deposition rate of S $i_{1-x}$G $e_{x}$ thin film were studied as a function of the deposition temperature and the Ge $H_4$/Si $H_4$input ratio, and the crystal phase and the surface roughness were studied by XRD and AFM(atomic force microscopy), respectively. The experimental results showed that the activation energy for the deposition of poly-S $i_{1-x}$G $e_{x}$ was about 32~37Kca /mol and the deposition rate of S $i_{1-x}$G $e_{x}$ thin films was increased with increasing the deposition temperature and the input ratio. From the analysis of composition, it was known that the Ge mole fraction within the poly-S $i_{1-x}$G $e_{x}$ thin film was decreased with decreasing the input ratio and increasing the deposition temperature. As-deposited S $i_{1-x}$G $e_{x}$ thin films were polycrystalline over the entire experimental range. But those were amorphous at the deposition temperature of 450, 475$^{\circ}C$ and the input ratio of 0.05. By adding the Ge $H_4$, poly-S $i_{1-x}$G $e_{x}$ thin film were deposited at relatively lower deposition temperatures($\leq$ 5$50^{\circ}C$) than those of conventional poly-Si(>$600^{\circ}C$). From surface roughness measurement of poly-S $i_{1-x}$G $e_{x}$ it was found that the surface roughness( $R_{i}$ ) increased with increasing the deposition temperature and input ratio.and input ratio.

  • PDF

Characterization of ultrathin ONO stacked dielectric layers for NVSM (NVSM용 초박막 ONO 적층 유전층의 특성)

  • 이상은;김선주;서광열
    • Journal of the Korean Crystal Growth and Crystal Technology
    • /
    • v.8 no.3
    • /
    • pp.424-430
    • /
    • 1998
  • Film characteristics of thin ONO dielectric layers for MONOS (metal-oxide-nitride-oxide-semiconductor) EEPROM was investigated by AES, SIMS, TEM and AFM. The ONO films with different dimension of tunneling oxide, nitride, and blocking oxide were fabricated. During deposition of the LPCVD nitride films on tunneling oxide, this thin oxide was nitrized. When the blocking oxide were deposited on the nitride film, the oxygen not only oxidized the nitride surface, but diffused through the nitride. The results of ONO film analysis exhibits that it is made up of $SiO_2$(blocking oxide)/O-rich SiOxNy (interface)/ N-rich SiOxNy(nitride)/O-rich SiOxNy(tunneling oxide). In addition, the SiON phase is distributed mainly near the tunneling oxide/nitride and nitride/blocking oxide interfaces, and the $Si_2NO$ phase is distributed mainly at nitride side of each interfaces and in tunneling oxide.

  • PDF

Surface Protection Obtained by Anodic Oxidation of New Ti-Ta-Zr Alloy

  • Vasilescu, C.;Drob, S.I.;Calderon Moreno, J.M.;Drob, P.;Popa, M.;Vasilescu, E.
    • Corrosion Science and Technology
    • /
    • v.17 no.2
    • /
    • pp.45-53
    • /
    • 2018
  • A new 80Ti-15Ta-5Zr wt% alloy surface was protected by anodic oxidation in phosphoric acid solution. The protective oxide layer (TiO2, ZrO2 and Ta suboxides and thickness of 15.5 nm) incorporated $PO{_4}^{3-}$ ions from the solution, according to high resolution XPS spectra. The AFM analysis determined a high roughness with SEM detected pores (20 - 50 nm). The electrochemical studies of bare and anodically oxidized Ti-15Ta-5Zr alloy in Carter-Brugirard saliva of different pH values and saliva with 0.05M NaF, pointed to a nobler surface for the protected alloy, with a thicker electrodeposited oxide layer acting as a barrier against aggressive ions. The oxidized alloy significantly decreased corrosion current densities and total quantity of ions released into the oral environment in comparison with the bare one, at higher polarisation resistance and protective capacity of the electrodeposited layer. The impedance data revealed a bi-layered oxidation film formed by: a dense, compact, barrier layer in contact with the metallic substrate, decreasing the potential gradient across the metal/oxide layer/solution interface, reducing the anodic dissolution and a more permissive, porous layer in contact with the electrolyte. The open circuit potential for protected alloy shifted to nobler values, with thickening of the oxidation film signifying long-term protection.

Increased Osteoblast Adhesion Densities on High Surface Roughness and on High Density of Pores in NiTi Surfaces

  • Im, Yeon-Min;Gang, Dong-U;Kim, Yeon-Uk;Nam, Tae-Hyeon
    • Proceedings of the Materials Research Society of Korea Conference
    • /
    • 2009.11a
    • /
    • pp.39.1-39.1
    • /
    • 2009
  • NiTi alloy is widely used innumerous biomedical applications (orthodontics, cardiovascular, orthopaedics, etc.) for its distinctive thermomechanical and mechanical properties such as shape memory effect, super elasticity, low elastic modulus and high damping capacity. However, NiTi alloy is still a controversial biomaterial because of its high Ni content which can trigger the risk of allergy and adverse reactions when Ni ion releases into the human body. In order to improve the corrosion resistance of the TiNi alloy and suppress the release of Ni ions, many surface modification techniques have been employed in previous literature such as thermal oxidation, laser surface treatment, sol-gel method, anodic oxidation and electrochemical methods. In this paper, the NiTi was electrochemically etched in various electrolytes to modify surface. The microstructure, element distribution, phase composition and roughness of the surface were investigatedby scanning electron microscopy (SEM), energy-dispersive X-ray spectrometry(EDS), X-ray diffractometry (XRD) and atomic force microscopy (AFM). Systematic controlling of nano and submicron surface features was achieved by altered density of hydro fluidic acid in etchant solution. Nanoscale surface topography, such as, pore density, pore width, pore height, surface roughness and surface tension were extensively analyzed as systematical variables.Importantly, bone forming cell, osteoblast adhesion was increased in high density of hydro fluidic treated surface structures, i.e., in greater nanoscale surface roughness and in high surface areas through increasing pore densities.All results delineate the importance of surface topography parameter (pores) inNiTi to increase the biocompatibility of NiTi in identical chemistry which is crucial factor for determining biomaterials.

  • PDF

Chemical Vapor Deposition of Ga2O3 Thin Films on Si Substrates

  • Kim, Doo-Hyun;Yoo, Seung-Ho;Chung, Taek-Mo;An, Ki-Seok;Yoo, Hee-Soo;Kim, Yun-Soo
    • Bulletin of the Korean Chemical Society
    • /
    • v.23 no.2
    • /
    • pp.225-228
    • /
    • 2002
  • Amorphous $Ga_2O_3$ films have been grown on Si(100) substrates by metal organic chemical vapor deposition (MOCVD) using gallium isopropoxide, $Ga(O^iPr)_3$, as single precursor. Deposition was carried out in the substrate temperature range 400-800 $^{\circ}C$. X-ray photoelectron spectroscopy (XPS) analysis revealed deposition of stoichiometric $Ga_2O_3$ thin films at 500-600 $^{\circ}C$. XPS depth profiling by $Ar^+$ ion sputtering indicated that carbon contamination exists mostly in the surface region with less than 3.5% content in the film. Microscopic images of the films by scanning electron microscopy (SEM) and atomic force microscopy (AFM) showed formation of grains of approximately 20-40 nm in size on the film surfaces. The root-mean-square surface roughness from an AFM image was ${\sim}10{\AA}$. The interfacial layer of the $Ga_2O_3$/Si was measured to be ${\sim}35{\AA}$ thick by cross-sectional transmission electron microscopy (TEM). From the analysis of gaseous products of the CVD reaction by gas chromatography-mass spectrometry (GC-MS), an effort was made to explain the CVD mechanism.

Derivation of Ecological Protective Concentration using the Probabilistic Ecological Risk Assessment applicable for Korean Water Environment: (I) Cadmium

  • Nam, Sun-Hwa;Lee, Woo-Mi;An, Youn-Joo
    • Toxicological Research
    • /
    • v.28 no.2
    • /
    • pp.129-137
    • /
    • 2012
  • Probabilistic ecological risk assessment (PERA) for deriving ecological protective concentration (EPC) was previously suggested in USA, Australia, New Zealand, Canada, and Netherland. This study suggested the EPC of cadmium (Cd) based on the PERA to be suitable to Korean aquatic ecosystem. First, we collected reliable ecotoxicity data from reliable data without restriction and reliable data with restrictions. Next, we sorted the ecotoxicity data based on the site-specific locations, exposure duration, and water hardness. To correct toxicity by the water hardness, EU's hardness corrected algorithm was used with slope factor 0.89 and a benchmark of water hardness 100. EPC was calculated according to statistical extrapolation method (SEM), statistical extrapolation $method_{Acute\;to\;chronic\;ratio}$ ($SEM_{ACR}$), and assessment factor method (AFM). As a result, aquatic toxicity data of Cd were collected from 43 acute toxicity data (4 Actinopterygill, 29 Branchiopoda, 1 Polychaeta, 2 Bryozoa, 6 Chlorophyceae, 1 Chanophyceae) and 40 chronic toxicity data (2 Actinopterygill, 23 Branchiopoda, 9 Chlorophyceae, 6 Macrophytes). Because toxicity data of Cd belongs to 4 classes in taxonomical classification, acute and chronic EPC (11.07 ${\mu}g/l$ and 0.034 ${\mu}g/l$, respectively) was calculated according to SEM technique. These values were included in the range of international EPCs. This study would be useful to establish the ecological standard for the protection of aquatic ecosystem in Korea.

Effects of Surface Defect Distribution of $SiO_x(x{\le}2)$ Plates on Chemical Quenching ($SiO_x(x{\le}2)$ 플레이트의 표면 결함 분포가 화학 소염에 미치는 영향)

  • Kim, Kyu-Tae;Kwon, Se-Jin
    • 한국연소학회:학술대회논문집
    • /
    • 2005.10a
    • /
    • pp.328-336
    • /
    • 2005
  • Effects of surface defect distribution on flame instability during flame-surface interaction are experimentally investigated. To examine the chemical quenching phenomenon, we prepared thermally grown silicon oxide plates with well-defined defect density. Ion implantation was used to control the number of defects, i.e. oxygen vacancies. In an attempt to preferentially remove the oxygen atoms from silicon dioxide surface, argon ions with low energy level from 3keV to 5keV were irradiated at the incident angle of $60^{\circ}C$. Compositional and structural modification of $SiO_2$ induced by low-energy $Ar^+$ ion irradiation has been characterized by Atomic Force Microscopy (AFM) and X-ray Photoelectron Spectroscopy (XPS). The analysis shows that as the ion energy increases, the number of structural defect also increases and non-stoichiometric condition of $SiO_x(x{\le}2)$ plates is enhanced. From the quenching distance measurements, we found out that when the surface temperature is under $300^{\circ}C$, the quenching distance decreases on account of reduced heat loss; as the surface temperature increases over $300^{\circ}C$, however, quenching distance increases despite reduced heat loss effect. Such aberrant behavior is caused by heterogeneous chemical reaction between active radicals and surface defect sites. The higher defect density, the larger quenching distance. This results means that chemical quenching is governed by radical adsorption and can be parameterized by the oxygen vacancy density on the surface.

  • PDF