• Title/Summary/Keyword: I-${\kappa}B$ phosphorylation

Search Result 243, Processing Time 0.022 seconds

Pro-inflammatory Cytokine Expression Through NF-${\kappa}B/I{\kappa}B$ Pathway in Lung Epithelial Cells (폐 상피세포에서 NF-${\kappa}B/I{\kappa}B$ 경로에 의한 염증매개 사이토카인의 발현)

  • Park, Gye-Young;Lee, Seung-Hee;HwangBo, Bin;Yim, Jae-Joon;Lee, Choon-Taek;Kim, Young-Whan;Han, Sung-Koo;Shim, Young-Soo;Yoo, Chul-Gyu
    • Tuberculosis and Respiratory Diseases
    • /
    • v.49 no.3
    • /
    • pp.332-342
    • /
    • 2000
  • Background : The importance of pro-inflammatory cytokines, especially tumor necrosis factor $\alpha$ (INF-$\alpha$) and interleukin-1$\beta$ (IL-1$\beta$), have been extensively documented in the generation of inflammatory lung disease. Lung epithelial cells are also actively involved in initiating and maintaining inflammation by producing pro-inflammatory mediators. Understanding the mechanism of pro-inflammatory cytokine expression in lung epithelial cells is crucial to the development of new therapeutic modalities for inflammatory lung disease. Transcription of most pro-inflammatory cytokines is dependent on the activation of NF-${\kappa}B$. However, the relationship between pro-inflammatory cytokine expression and NF-${\kappa}B/I{\kappa}B$ pathway in lung epithelial cells is not clear. Methods : BEAS-2B, A549, Na-H157, NCI-H719 cells were stimulated with IL-$1{\beta}$ or TNF-$\alpha$ at various times, and then IL-8 and TNF-$\alpha$mRNA expressions were assayed by Northern blot analysis. IL-$1{\beta}$ or TNF-$\alpha$-induced NF-${\kappa}B$ activation was assessed by the nuclear translocation of p65 NF-${\kappa}B$ subunit. The degradation of $I{\kappa}B{\alpha}$ and $I{\kappa}B{\beta}$ by IL-$1{\beta}$ or TNF-$\alpha$stimulation was assayed by Western blot analysis. The phosphorylation of $I{\kappa}B{\alpha}$ was evaluated by Western blot analysis after pre-treating cells with proteasome inhibitor followed by IL-$1{\beta}$ or TNF-$\alpha$ stimulation. The basal level of IKK $\alpha$ expression was evaluated by Western blot analysis. Results: $I{\kappa}B{\alpha}$ and $I{\kappa}B{\alpha}$ was rapidly degraded after 5 minutes of incubation with IL-$1{\beta}$ or TNF-$\alpha$ in BEAS-2B, A549, and NCI-H157 cells. The activation of NF-${\kappa}B{\alpha}$ and the induction of IL-8 and TNF-$\alpha$ mRNA expression were observed by IL-$1{\beta}$ or TNF-$\alpha$ stimulation in these cells. In contrast, neither the changes in NF-${\kappa}B/I{\kappa}B$ pathway nor IL-8 and TNF-$\alpha$mRNA expression was induced by IL-$1{\beta}$ or TNF-$\alpha$ stimulation in NCI-H719 cells. IL-$1{\beta}$ and TNF-$\alpha$-induced $I{\kappa}B$ phosphorylation was observed in BEAS-2B, A549, and NCI-H157 cells, but not in NCI-H719 cells. The basal level of IKK$\alpha$ expression was not different between cell. Conclusion : NF-${\kappa}B/I{\kappa}B$ pathway plays an important role in the expression of pro-inflammatory cytokine in most lung epithelial cells. The absence of the effect on NF-${\kappa}B/I{\kappa}B$ pathway in NCI-H719 cells sæms to be due to the defect in the intracellular signal transduction pathway upstream to IKK.

  • PDF

Flowers of Inula japonica Attenuate Inflammatory Responses

  • Choi, Jeon-Hyeun;Park, Young-Na;Li, Ying;Jin, Mei-Hua;Lee, Ji-Ean;Lee, Youn-Ju;Son, Jong-Keun;Chang, Hyeun-Wook;Lee, Eun-Kyung
    • IMMUNE NETWORK
    • /
    • v.10 no.5
    • /
    • pp.145-152
    • /
    • 2010
  • Background: The flowers of Inula japonica (Inulae Flos) have long been used in traditional medicine for the treatment of inflammatory diseases. In the present study, we investigated the anti-inflammatory properties of Inulae Flos Extract (IFE). Methods: The anti-inflammatory effects of IFE against nitric oxide (NO), $PGE_2$, TNF-${\alpha}$, and IL-6 release, as well as NF-${\kappa}B$ and MAP kinase activation were evaluated in RAW 264.7 cells. Results: IFE inhibited the production of NO and the expression of inducible nitric oxide synthase (iNOS) in LPS-stimulated RAW264.7 cells. In addition, IFE reduced the release of pro-inflammatory cytokines, such as TNF-${\alpha}$ and IL-6. Furthermore, IFE inhibited the NF-${\kappa}B$ activation induced by LPS, which was associated with the abrogation of $I{\kappa}B-{\alpha}$ degradation and subsequent decreases in nuclear p65 and p50 levels. Moreover, the phosphorylation of ERK, JNK, and p38 MAP kinases in LPS-stimulated RAW 264.7 cells was suppressed by IFE in a dose-dependent manner. Conclusion: These results suggest that the anti-inflammation activities of IFE might be attributed to the inhibition of NO, iNOS and cytokine expression through the down-regulation of NF-${\kappa}B$ activation via suppression of $I{\kappa}B{\alpha}$ and MAP kinase phosphorylation in macrophages.

Anti-inflammatory Effect of Red Ginseng through Regulation of MAPK in Lipopolysaccharide-stimulated RAW264.7 (Lipopolysaccharide로 유도된 RAW264.7 세포에서 MAPK에 의한 홍삼추출물의 항염증 효과)

  • Shin, Ji-Su;Kim, Jong-Myoung;An, Won-Gun
    • Journal of Physiology & Pathology in Korean Medicine
    • /
    • v.26 no.3
    • /
    • pp.293-300
    • /
    • 2012
  • Inducible nitric oxide synthase (iNOS) and cyclooxygenase-2 (COX-2) are important inflammatory mediators implicated in pathogenesis of inflammation and certain types of human cancers. The present study was designed to determine whether Red Ginseng (RG) could modulate $I{\kappa}B$-kinase, iNOS and COX-2 gene expression and immune responses in RAW 264.7 macrophages stimulated with lipopolysaccharide (LPS). RG extract suppressed the expression of LPS-induced $I{\kappa}B$, iNOS, COX-2, and immune responses in a dose-dependent manner. It also showed an anti-inflammatory effect by inhibiting NF-${\kappa}B$ immune response induced by LPS treatment. Inhibitory effect of RG on LPS-induced inflammation was mediated by suppressed phosphorylation of ERK, JNK and p38 through the regulation of the mitogen-activated protein kinase (MAPK) pathway leading to a decreased production of NO, iNOS, COX-2 and NF-${\kappa}B$. The results implied the role of RG as an inflammation regulator and its possible application for curing inflammatory diseases.

Effect of quercetin on the production of nitric oxide in murine macrophages stimulated with lipopolysaccharide from Prevotella intermedia

  • Cho, Yun-Jung;Kim, Sung-Jo
    • Journal of Periodontal and Implant Science
    • /
    • v.43 no.4
    • /
    • pp.191-197
    • /
    • 2013
  • Purpose: Nitric oxide (NO) is a short-lived bioactive molecule that is known to play an important role in the pathogenesis of periodontal disease. In the current study, we investigated the effect of the flavonoid quercetin on the production of NO in murine macrophages activated with lipopolysaccharide (LPS) from Prevotella intermedia, a pathogen related to inflammatory periodontal disease, and tried to elucidate the underlying mechanisms of action. Methods: LPS was isolated from P. intermedia ATCC 25611 cells by the standard hot phenol-water method. The concentration of NO in cell culture supernatants was determined by measuring the accumulation of nitrite. Inducible NO synthase (iNOS) and heme oxygenase-1 (HO-1) protein expression, phosphorylation of c-Jun N-terminal kinase (JNK) and p38, inhibitory ${\kappa}B$ $(I{\kappa}B)-{\alpha}$ degradation, and signal transducer and activator of transcription 1 (STAT1) phosphorylation were analyzed via immunoblotting. Results: Quercetin significantly attenuated iNOS-derived NO production in RAW246.7 cells activated by P. intermedia LPS. In addition, quercetin induced HO-1 protein expression in cells activated with P. intermedia LPS. Tin protoporphyrin IX (SnPP), a competitive inhibitor of HO-1, abolished the inhibitory effect of quercetin on LPS-induced NO production. Quercetin did not affect the phosphorylation of JNK and p38 induced by P. intermedia LPS. The degradation of $I{\kappa}B-{\alpha}$ induced by P. intermedia LPS was inhibited when the cells were treated with quercetin. Quercetin also inhibited LPS-induced STAT1 signaling. Conclusions: Quercetin significantly inhibits iNOS-derived NO production in murine macrophages activated by P. intermedia LPS via anti-inflammatory HO-1 induction and inhibition of the nuclear factor-${\kappa}B$ and STAT1 signaling pathways. Our study suggests that quercetin may contribute to the modulation of host-destructive responses mediated by NO and appears to have potential as a novel therapeutic agent for treating inflammatory periodontal disease.

Tussilagone suppressed the production and gene expression of MUC5AC mucin via regulating nuclear factor-kappa B signaling pathway in airway epithelial cells

  • Choi, Byung-Soo;Kim, Yu-jin;Yoon, Yong Pill;Lee, Hyun Jae;Lee, Choong Jae
    • The Korean Journal of Physiology and Pharmacology
    • /
    • v.22 no.6
    • /
    • pp.671-677
    • /
    • 2018
  • In the present study, we investigated whether tussilagone, a natural product derived from Tussilago farfara, significantly affects the production and gene expression of airway MUC5AC mucin. Confluent NCI-H292 cells were pretreated with tussilagone for 30 min and then stimulated with EGF (epidermal growth factor) or PMA (phorbol 12-myristate 13-acetate) for 24 h or the indicated periods. The MUC5AC mucin gene expression was measured by RT-PCR. Production of MUC5AC mucin protein was measured by ELISA. To elucidate the action mechanism of tussilagone, effect of tussilagone on PMA-induced $NF-{\kappa}B$ signaling pathway was investigated by western blot analysis. Tussilagone significantly inhibited the production of MUC5AC mucin protein and down-regulated the expression of MUC5AC mucin gene, induced by EGF or PMA. Tussilagone inhibited PMA-induced activation (phosphorylation) of inhibitory kappa B kinase (IKK), and thus phosphorylation and degradation of inhibitory kappa Ba ($I{\kappa}B{\alpha}$). Tussilagone inhibited PMA-induced phosphorylation and nuclear translocation of nuclear factor kappa B ($NF-{\kappa}B$) p65. This, in turn, led to the down-regulation of MUC5AC protein production in NCI-H292 cells. These results suggest that tussilagone can regulate the production and gene expression of mucin by acting on airway epithelial cells through regulation of $NF-{\kappa}B$ signaling pathway.

Emodin Isolated from Polygoni cuspidati Radix Inhibits TNF-α and IL-6 Release by Blockading NF-κB and MAP Kinase Pathways in Mast Cells Stimulated with PMA Plus A23187

  • Lu, Yue;Jeong, Yong-Tae;Li, Xian;Kim, Mi Jin;Park, Pil-Hoon;Hwang, Seung-Lark;Son, Jong Keun;Chang, Hyeun Wook
    • Biomolecules & Therapeutics
    • /
    • v.21 no.6
    • /
    • pp.435-441
    • /
    • 2013
  • Emodin, a naturally occurring anthraquinone derivative isolated from Polygoni cuspidati radix, has several beneficial pharmacologic effects, which include anti-cancer, anti-diabetic, and anti-inflammatory activities. In this study, the authors examined the effect of emodin on the production of proinflammatory cytokines, such as, tumor necrosis factor (TNF)-${\alpha}$ and interleukin (IL)-6, in mouse bone marrow-derived mast cells (BMMCs) stimulated with phorbol 12-myristate 13-acetate (PMA) plus the calcium ionophore A23187. To investigate the mechanism responsible for the regulation of pro-inflammatory cytokine production by emodin, the authors assessed its effects on the activations of transcriptional factor nuclear factor-${\kappa}B$ (NF-${\kappa}B$) and mitogen-activated protein kinases (MAPKs). Emodin attenuated the nuclear translocation of (NF)-${\kappa}B$ p65 and its DNA-binding activity by reducing the phosphorylation and degradation of $I{\kappa}B{\alpha}$ and the phosphorylation of $I{\kappa}B$ kinase B (IKK). Furthermore, emodin dose-dependently attenuated the phosphorylations of MAPKs, such as, extracellular signal-regulated kinase 1/2 (ERK1/2), p38 MAP kinase, and the stress-activated protein kinases (SAPK)/c-Jun-N-terminal kinase (JNK). Taken together, the findings of this study suggest that the anti-inflammatory effects of emodin on PMA plus A23187-stimulated BMMCs are mediated via the inhibition of NF-${\kappa}B$ activation and of the MAPK pathway.

The Stem Bark of Kalopanax pictus Exhibits Anti-inflammatory Effect through Heme Oxygenase-1 Induction and NF-${\kappa}B$ Suppression

  • Bang, Soo-Young;Park, Ga-Young;Park, Sun-Young;Kim, Ji-Hee;Lee, Yun-Kyoung;Lee, Sang-Joon;Kim, Young-Hee
    • IMMUNE NETWORK
    • /
    • v.10 no.6
    • /
    • pp.212-218
    • /
    • 2010
  • Backgroud: The stem bark of Kalopanax pictus (KP) has been used in traditional medicine to treat rheumatoidal arthritis, neurotic pain and diabetes mellitus in China and Korea. In this study, the mechanism responsible for anti-inflammatory effects of KP was investigated. Methods: We examined the effects of KP on NO production, nitric oxide synthase (iNOS) and HO-1 expression, NF-${\kappa}B$, Nrf2 and MAPK activation in mouse peritoneal macrophages. Results: The aqueous extract of KP inhibited LPS-induced NO secretion as well as inducible iNOS expression, without affecting cell viability. KP suppressed LPS-induced NF-${\kappa}B$ activation, phosphorylation and degradation of $I{\kappa}B-{\alpha}$, phosphorylation of extracellular signal-regulated kinase 1/2 (ERK1/2) and c-Jun N-terminal kinase (JNK). Furthermore, KP induced HO-1 expression and Nrf2 nuclear translocation. Conclusion: These results suggest that KP has the inhibitory effects on LPS-induced NO production in macrophages through NF-${\kappa}B$ suppression and HO-1 induction.

Methyl p-Hydroxycinnamate Suppresses Lipopolysaccharide-Induced Inflammatory Responses through Akt Phosphorylation in RAW264.7 Cells

  • Vo, Van Anh;Lee, Jae-Won;Shin, Seung-Yeon;Kwon, Jae-Hyun;Lee, Hee Jae;Kim, Sung-Soo;Kwon, Yong-Soo;Chun, Wanjoo
    • Biomolecules & Therapeutics
    • /
    • v.22 no.1
    • /
    • pp.10-16
    • /
    • 2014
  • Derivatives of caffeic acid have been reported to possess diverse pharmacological properties such as anti-inflammatory, anti-tumor, and neuroprotective effects. However, the biological activity of methyl p-hydroxycinnamate, an ester derivative of caffeic acid, has not been clearly demonstrated. This study aimed to elucidate the anti-inflammatory mechanism of methyl p-hydroxycinnamate in lipopolysaccharide (LPS)-stimulated RAW 264.7 macrophage cells. Methyl p-hydroxycinnamate significantly inhibited LPS-induced excessive production of pro-inflammatory mediators such as nitric oxide (NO) and $PGE_2$ and the protein expression of iNOS and COX-2. Methyl p-hydroxycinnamate also suppressed LPS-induced overproduction of pro-inflammatory cytokines such as IL-$1{\beta}$ and TNF-${\alpha}$. In addition, methyl p-hydroxycinnamate significantly suppressed LPS-induced degradation of $I{\kappa}B$, which retains NF-${\kappa}B$ in the cytoplasm, consequently inhibiting the transcription of pro-inflammatory genes by NF-${\kappa}B$ in the nucleus. Methyl p-hydroxycinnamate exhibited significantly increased Akt phosphorylation in a concentration-dependent manner. Furthermore, inhibition of Akt signaling pathway with wortmaninn abolished methyl p-hydroxycinnamate-induced Akt phosphorylation. Taken together, the present study clearly demonstrates that methyl p-hydroxycinnamate exhibits anti-inflammatory activity through the activation of Akt signaling pathway in LPS-stimulated RAW264.7 macrophage cells.

Ameliorating Effects of Atractylodes macrocephala Koidzumi on TNF-α-induced 3T3-L1 Adipocyte Dysfunction (백출추출물이 TNF-α 유도 지방세포염증과 인슐린저항성 회복에 미치는 영향)

  • Bin, Chang-Hyun;Song, Choon-Ho
    • Korean Journal of Acupuncture
    • /
    • v.32 no.3
    • /
    • pp.116-123
    • /
    • 2015
  • Objectives : The present study was designed to investigate effects and molecular mechanisms of Atractylodes macrocephala Koidzumi extracts(AMK) on the improvement of adipocyte dysfunction induced by TNF-${\alpha}$ in 3T3-L1 adipocytes. We examined whether AMK could directly influence the inflammation and insulin resistance in 3T3-L1 adipocytes. Methods : Potential roles of AMK in the lipolysis, production of inflammatory adipokines and ROS, expression and phosphorylation of ERK, JNK, and $I{\kappa}B{\alpha}$ protein, and expression of $PPAR{\gamma}$ and C/EBP${\alpha}$ were investigated in this study. Results : Our data demonstrated that TNF-${\alpha}$ significantly increased lipolysis, levels of MCP-1, IL-6, and ROS and phosphorylation of ERK, JNK, and $I{\kappa}B{\alpha}$ protein, while TNF-${\alpha}$ reduced the expression of $PPAR{\gamma}$ and C/EBP${\alpha}$ in adipocytes, suggesting that TNF-${\alpha}$ induced a condition with the occurrence of inflammation and insulin resistance. Those alterations induced by TNF-${\alpha}$ were prevented by the treatment of AMK. AMK down-regulated the phosphorylation of ERK, JNK, and $I{\kappa}B{\alpha}$ protein and up-regulated the expression of $PPAR{\gamma}$ and C/EBP${\alpha}$ on TNF-${\alpha}$-induced inflammation and insulin resistance. Conclusions : Thus, our results indicate that AMK can be used to prevent from the TNF-${\alpha}$-induced adipocyte dysfunction through MAPK, $NF{\kappa}B$ and $PPAR{\gamma}$ pathways.

Investigation of Antimicrobial and Anti-inflammatory Activities of the Hyeonggaeyeongyotang Gagambang (형개련교탕(荊芥連翹湯) 가감방(加減方)의 항균 및 항염증 효능)

  • Gang, Seong Gu;Cho, Nam Joon;Kim, Ji Young;Han, Hyo Sang;Kim, Kee Kwang
    • The Korea Journal of Herbology
    • /
    • v.33 no.4
    • /
    • pp.35-41
    • /
    • 2018
  • Objectives : Hyeonggaeyeongyotang Gagambang (HYT) is a herbal medicine prescribed for the treatment of inflammatory diseases, but it is necessary to study the exact therapeutic efficacy. This study aims to investigate the antibacterial and anti-inflmmatory activities of HYT. Methods : Antibacterial activity of HYT was confirmed by staining Escherichia coli, a gram negative strain, and Staphylococcus aureus, a gram positive strain, on solid Lysogeny Broth (LB) medium containing HYT. Antioxidant activity of HYT was confirmed by 2,2'-azino-bis-3-ethylbenzothiazoline-6-sulphonic acid (ABTS) assay. The phosphorylation of nuclear factor of kappa light polypeptide gene enhancer in B-cells inhibitor, alpha ($I{\kappa}B{\alpha}$) after lipopolysaccharide (LPS) treatment with HYT-treated RAW 264.7 mouse macrophages cells was confirmed by immunoblot analysis and the level of interleukin 1 beta (IL-$1{\beta}$) mRNA expression level was confirmed by quantitative real-time PCR. Results : HYT showed a concentration-dependent antibacterial activity against Escherichia coli and Staphylococcus aureus and also showed excellent antioxidant activity. HYT treatment attenuated the phosphorylation of $I{\kappa}B{\alpha}$induced by LPS treatment in RAW 264.7 mouse macrophages cells. The phosphorylation of $I{\kappa}B{\alpha}$is crucial for the regulation of the expression of various pro-inflammatory cytokines. In addition, IL-$1{\beta}$ mRNA expression level of RAW 264.7 mouse macrophages cells stimulated by LPS treatment was also inhibited by HYT treatment. Conclusions : Through experimental demonstration of the antioxidative, antimicrobial and anti-inflammatory effects of HYT, we demonstrated that HYT is a herbal medicine effective for the treatment of inflammatory diseases caused by various bacterial infections.