Browse > Article
http://dx.doi.org/10.14406/acu.2015.020

Ameliorating Effects of Atractylodes macrocephala Koidzumi on TNF-α-induced 3T3-L1 Adipocyte Dysfunction  

Bin, Chang-Hyun (Department of Meridian and Acupoint, College of Korean Medicine, Dong-Eui University)
Song, Choon-Ho (Department of Meridian and Acupoint, College of Korean Medicine, Dong-Eui University)
Publication Information
Korean Journal of Acupuncture / v.32, no.3, 2015 , pp. 116-123 More about this Journal
Abstract
Objectives : The present study was designed to investigate effects and molecular mechanisms of Atractylodes macrocephala Koidzumi extracts(AMK) on the improvement of adipocyte dysfunction induced by TNF-${\alpha}$ in 3T3-L1 adipocytes. We examined whether AMK could directly influence the inflammation and insulin resistance in 3T3-L1 adipocytes. Methods : Potential roles of AMK in the lipolysis, production of inflammatory adipokines and ROS, expression and phosphorylation of ERK, JNK, and $I{\kappa}B{\alpha}$ protein, and expression of $PPAR{\gamma}$ and C/EBP${\alpha}$ were investigated in this study. Results : Our data demonstrated that TNF-${\alpha}$ significantly increased lipolysis, levels of MCP-1, IL-6, and ROS and phosphorylation of ERK, JNK, and $I{\kappa}B{\alpha}$ protein, while TNF-${\alpha}$ reduced the expression of $PPAR{\gamma}$ and C/EBP${\alpha}$ in adipocytes, suggesting that TNF-${\alpha}$ induced a condition with the occurrence of inflammation and insulin resistance. Those alterations induced by TNF-${\alpha}$ were prevented by the treatment of AMK. AMK down-regulated the phosphorylation of ERK, JNK, and $I{\kappa}B{\alpha}$ protein and up-regulated the expression of $PPAR{\gamma}$ and C/EBP${\alpha}$ on TNF-${\alpha}$-induced inflammation and insulin resistance. Conclusions : Thus, our results indicate that AMK can be used to prevent from the TNF-${\alpha}$-induced adipocyte dysfunction through MAPK, $NF{\kappa}B$ and $PPAR{\gamma}$ pathways.
Keywords
Atractylodes macrocephala koidzumi; TNF-${\alpha}$; inflammation; insulin resistance;
Citations & Related Records
Times Cited By KSCI : 3  (Citation Analysis)
연도 인용수 순위
1 Galic S, Oakhill JS, Steinberg GR. Adipose tissue as an endocrine organ. Molecular and cellular endocrinology. 2010 ; 316(2) : 129-39.   DOI
2 Vazquez-Vela ME, Torres N, Tovar AR. White adipose tissue as endocrine organ and its role in obesity. Arch Med Res. 2008 ; 39(8) : 715-28.   DOI
3 Coppack SW. Pro-inflammatory cytokines and adipose tissue. Proc Nutr Soc. 2001 ; 60(3) : 349-56.   DOI
4 Chen X, Xun K, Chen L, Wang Y. TNF-alpha, a potent lipid metabolism regulator. Cell Biochem Funct. 2009 ; 27(7) : 407-16.   DOI
5 Chen XH, Zhao YP, Xue M, Ji CB, Gao CL, Zhu JG, et al. TNF-alpha induces mitochondrial dysfunction in 3T3-L1 adipocytes. Molecular and cellular endocrinology. 2010 ; 328(1-2) : 63-9.   DOI
6 Shin MG. Clinical Herbology. Seoul:Youngrimsa. 1992 : 172-3.
7 Lee SI, Ahn DK, Shin MG. Clinical Application of Oriental Medicine. Seoul: Sungbosa. 1982 : 358-60.
8 Hong MH, Kim JH, Bae H, Lee NY, Shin YC, Kim SH, et al. Atractylodes japonica Koidzumi inhibits the production of proinflammatory cytokines through inhibition of the NF-kappaB/IkappaB signal pathway in HMC-1 human mast cells. Archives of pharmacal research. 2010 ; 33(6) : 843-51.   DOI
9 Shim AR, Dong GZ, Lee HJ, Ryu JH. Atractylochromene Is a Repressor of Wnt/beta-Catenin Signaling in Colon Cancer Cells. Biomol Ther (Seoul). 2015 ; 23(1) : 26-30.   DOI
10 Kim CK, Kim M, Oh SD, Lee SM, Sun B, Choi GS, et al. Effects of Atractylodes macrocephala Koidzumi rhizome on 3T3-L1 adipogenesis and an animal model of obesity. J Ethnopharmacol. 2011 ; 137(1) : 396-402.   DOI
11 Han Y, Jung HW, Park YK. The roots of Atractylodes japonica Koidzumi promote adipogenic differentiation via activation of the insulin signaling pathway in 3T3-L1 cells. BMC Complement Altern Med. 2012 ; 12 : 154.   DOI
12 Hare JF, Taylor K. Surface-exposed proteins of 3T3-L1 adipocytes: identification of phosphorylated, insulin-translocated, and recycling proteins. Archives of biochemistry and biophysics. 1992 ; 293(2) : 416-23.   DOI
13 Lange K, Brandt U. Restricted localization of the adipocyte/muscle glucose transporter species to a cell surface-derived vesicle fraction of 3T3-L1 adipocytes. Inhibited lateral mobility of integral plasma membrane proteins in newly inserted membrane areas of differentiated 3T3-L1 cells. FEBS Lett. 1990 ; 276(1-2) : 39-41.   DOI
14 Robinson LJ, Pang S, Harris DS, Heuser J, James DE. Translocation of the glucose transporter (GLUT4) to the cell surface in permeabilized 3T3-L1 adipocytes: effects of ATP insulin, and GTP gamma S and localization of GLUT4 to clathrin lattices. The Journal of cell biology. 1992 ; 117(6) : 1181-96.   DOI
15 Korea Institute of Oriental Medicine. Korean Medicinal Materials Volume 1. Seoul:GeoBook. 2014 : 350-3.
16 Rajala MW, Scherer PE. Minireview: The adipocyte--at the crossroads of energy homeostasis, inflammation, and atherosclerosis. Endocrinology. 2003 ; 144(9) : 3765-73.   DOI
17 Qatanani M, Lazar MA. Mechanisms of obesity-associated insulin resistance: many choices on the menu. Genes & development. 2007 ; 21(12) : 1443-55.   DOI
18 Yu Y, Jia TZ, Cai Q, Jiang N, Ma MY, Min DY, et al. Comparison of the anti-ulcer activity between the crude and bran-proc essed Atractylodes lancea in the rat model of gastric ulcer induced by acetic acid. J Ethnopharmacol. 2015 ; 160 : 211-8.   DOI
19 Chen L, Chen R, Wang H, Liang F. Mechanisms Linking Inflammation to Insulin Resistance. Int J Endocrinol. 2015 ; 2015 : 508409.
20 Park JJ, Chon NR, Lee YJ, Park H. The Effects of an Extract of Atractylodes Japonica Rhizome, SKI3246 on Gastrointestinal Motility in Guinea Pigs. J Neurogastroenterol Motil. 2015 ; 21(3) : 352-60.   DOI
21 Zhou Y, Lu L, Li Z, Gao X, Tian J, Zhang L, et al. Antidepressant-like effects of the fractions of Xiaoyaosan on rat model of chronic unpredictable mild stress. J Ethnopharmacol. 2011; 137(1) : 236-44.   DOI
22 Kim HG, Ju MS, Park H, Seo Y, Jang YP, Hong J, et al. Evaluation of Samjunghwan, a traditional medicine, for neuroprotection against damage by amyloid-beta in rat cortical neurons. J Ethnopharmacol. 2010 ; 130(3) : 625-30.   DOI
23 Chang YH, Kim C, Jung M, Lim YH, Lee S, Kang S. Inhibition of melanogenesis by selina-4(14),7(11)-dien-8-one isolated from Atractylodis Rhizoma Alba. Biol Pharm Bull. 2007 ; 30(4) : 719-23.   DOI
24 Guilherme A, Virbasius JV, Puri V, Czech MP. Adipocyte dysfunctions linking obesity to insulin resistance and type 2 diabetes. Nat Rev Mol Cell Biol. 2008 ; 9(5) : 367-77.   DOI
25 Maury E, Noel L, Detry R, Brichard SM. In vitro hyperresponsiveness to tumor necrosis factor-alpha contributes to adipokine dysregulation in omental adipocytes of obese subjects. The Journal of clinical endocrinology and metabolism. 2009 ; 94(4) : 1393-400.   DOI
26 Xu H, Barnes GT, Yang Q, Tan G, Yang D, Chou CJ, et al. Chronic inflammation in fat plays a crucial role in the development of obesity-related insulin resistance. The Journal of clinical investigation. 2003 ; 112(12) : 1821-30.   DOI   ScienceOn
27 Bruun JM, Lihn AS, Verdich C, Pedersen SB, Toubro S, Astrup A, et al. Regulation of adiponectin by adipose tissue-derived cytokines: in vivo and in vitro investigations in humans. Am J Physiol Endocrinol Metab. 2003 ; 285(3) : E527-33.   DOI
28 Mohamed-Ali V, Goodrick S, Rawesh A, Katz DR, Miles JM, Yudkin JS, et al. Subcutaneous adipose tissue releases interleukin-6, but not tumor necrosis factor-alpha, in vivo. The Journal of clinical endocrinology and metabolism. 1997 ; 82(12) : 4196-200.   DOI
29 Fontana L, Eagon JC, Trujillo ME, Scherer PE, Klein S. Visceral fat adipokine secretion is associated with systemic inflammation in obese humans. Diabetes. 2007 ; 56(4) : 1010-3.   DOI
30 Hotamisligil GS. Inflammation and metabolic disorders. Nature. 2006 ; 444(7121) : 860-7.   DOI
31 Esposito K, Nappo F, Marfella R, Giugliano G, Giugliano F, Ciotola M, et al. Inflammatory cytokine concentrations are acutely increased by hyperglycemia in humans: role of oxidative stress. Circulation. 2002 ; 106(16) : 2067-72.   DOI
32 Gloire G, Legrand-Poels S, Piette J. NF-kappaB activation by reactive oxygen species: fifteen years later. Biochem Pharmacol. 2006 ; 72(11) : 1493-505.   DOI
33 Houstis N, Rosen ED, Lander ES. Reactive oxygen species have a causal role in multiple forms of insulin resistance. Nature. 2006 ; 440(7086) : 944-8.   DOI
34 Jain RG, Phelps KD, Pekala PH. Tumor necrosis factor-alpha initiated signal transduction in 3T3-L1 adipocytes. J Cell Physiol. 1999 ; 179(1) : 58-66.   DOI
35 Ruan H, Hacohen N, Golub TR, Van Parijs L, Lodish HF. Tumor necrosis factor-alpha suppresses adipocyte-specific genes and activates expression of preadipocyte genes in 3T3-L1 adipocytes: nuclear factor-kappaB activation by TNF-alpha is obligatory. Diabetes. 2002 ; 51(5) : 1319-36.   DOI
36 Ryden M, Dicker A, van Harmelen V, Hauner H, Brunnberg M, Perbeck L, et al. Mapping of early signaling events in tumor necrosis factor-alpha -mediated lipolysis in human fat cells. The Journal of biological chemistry. 2002 ; 277(2) : 1085-91.   DOI
37 Chae GN, Kwak SJ. NF-kappaB is involved in the TNF-alpha induced inhibition of the differentiation of 3T3-L1 cells by reducing PPARgamma expression. Experimental & molecular medicine. 2003 ; 35(5) : 431-7.   DOI
38 Stephens JM, Lee J, Pilch PF. Tumor necrosis factor-alpha-induced insulin resistance in 3T3-L1 adipocytes is accompanied by a loss of insulin receptor substrate-1 and GLUT4 expression without a loss of insulin receptor-mediated signal transduction. The Journal of biological chemistry. 1997 ; 272(2) : 971-6.   DOI   ScienceOn
39 Hu E, Kim JB, Sarraf P, Spiegelman BM. Inhibition of adipogenesis through MAP kinase-mediated phosphorylation of PPARgamma. Science (New York, NY). 1996 ; 274(5295) : 2100-3.   DOI
40 Stephens JM, Pekala PH. Transcriptional repression of the C/EBP-alpha and GLUT4 genes in 3T3-L1 adipocytes by tumor necrosis factor-alpha. Regulations is coordinate and independent of protein synthesis. The Journal of biological chemistry. 1992 ; 267(19) : 13580-4.