• Title/Summary/Keyword: I-${\kappa}B$ phosphorylation

Search Result 243, Processing Time 0.03 seconds

Anti-Inflammatory Effects of Picrasma Quassioides (D.DON) BENN Leaves Extracts (소태나무 잎 추출물의 항염증 효과)

  • Jung, Yeon Seop;Eun, Cheong Su;Jung, Young Tae;Kim, Hyun Jeong;Yu, Mi Hee
    • Journal of Life Science
    • /
    • v.23 no.5
    • /
    • pp.629-636
    • /
    • 2013
  • This study was performed to evaluate the anti-inflammatory and antioxidant activities of methanol extract from the leaves of Picrasma quassioides BENNET (PLME). The antioxidant effects of PLME were measured based on polyphenol and flavonoid contents. PLME was found to have $367.52{\mu}g/mg$ and $46.61{\mu}g/mg$ high polyphenol and flavonoid contents. Cell viability was determined by MTT assay. The production of nitric oxide (NO) and prostaglandin $E_2$ ($PGE_2$) was measured by Griess assay and enzyme-linked immunosorbent assay (ELISA). In order to effectively anti-inflammatory agents, we examined the inhibitory effects on the production of lipopolysaccharide (LPS)-induced NO and $PGE_2$ in RAW 264.7 cells. PLME significantly decreased the production of NO and $PGE_2$ in a dose-dependent manner, and also reduced the expression of iNOS, a COX-2 protein. In addition, PLME reduced the NF-${\kappa}B$, $I{\kappa}B$ phosphorylation in RAW 264.7 cells upon stimulation with LPS (100 ng/ml) for 24 h. These results provide evidence for the anti-inflammatory and antioxidant effects of Picrasma quassioides leaves.

Magnolol Inhibits iNOS, p38 Kinase, and NF-κB/Rel in Murine Macrophages

  • Li Mei Hong;Chang In-Youp;Youn Ho-Jin;Jang Dae-Sik;Kim Jin-Sook;Jeon Young-Jin
    • Toxicological Research
    • /
    • v.22 no.3
    • /
    • pp.293-299
    • /
    • 2006
  • We demonstrate that magnolol, a hydroxylated biphenyl compound isolated from Magnolia officinalis, inhibits LPS-induced expression of iNOS gene in RAW 264.7 cells(murine macrophage cell line). Treatment of RAW 264.7 cells with magnolol inhibited LPS-stimulated nitric oxide production in a dose-related manner. RT-PCR analysis showed that the decrease of NO was due to the inhibition of iNOS gene expression. Western immunoblot analysis of phosphorylate p38 kinase showed magnolol significantly inhibited the phosphorylation of p38 kinase which is important in the regulation of iNOS gene expression. The specific p38 inhibiter SB203580 abrogated the LPS-induced NO generation and iNOS expression, whereas the selective MEK-1 inhibitor PD98059 did not affect the NO induction. Immunostaining of p65 and reporter gene assay showed that magnolol inhibited NF-${\kappa}/Rel$ nuclear translocation and transcriptional activation, respectively. Collectively, this series of experiments indicates that magnolol inhibits iNOS gene expression by blocking NF-k/Rel and p38 kinase signaling. Due to the critical role that NO release plays in mediating inflammatory responses, the inhibitory effects of magnolol or iNOS suggest that magnolol may represent a useful anti-inflammatory agent.

Inhibitory Effect of Extract from Ostericum koreanum on LPS-induced Proinflammatory Cytokines Production in RAW264.7 Cells (LPS로 자극한 RAW264.7 세포에서 강활 추출물의 염증성세포활성물질의 억제효과)

  • Park, Hee-Je;Bae, Gi-Sang;Kim, Do-Yun;Seo, Sang-Wan;Park, Kyung-Bae;Kim, Byung-Jin;Song, Je-Moon;Lee, Kyung-Yong;Na, Chul;Shin, Byung-Chul;Park, Sung-Joo;Song, Ho-Joon;Hwang, Sung-Yeon
    • The Korea Journal of Herbology
    • /
    • v.23 no.3
    • /
    • pp.127-134
    • /
    • 2008
  • Objectives : The present study was designed to investigate whether Ostericum koreanum (OK) could regulate lipopolysaccharide (LPS)-induced inflammatory response in vitro and in vivo. Methods : To evaluate of anti-inflammatory effect of OK, we examined Nitric oxide (NO), proinflammatory cytokines production in LPS-stimulated RAW264.7 cells. Furthermore, we checked molecular mechanism especially in the phosphorylation of mitogen-activated protein kinases (MAPKs) and the degradation of inhibitory kappa B a ($Ik-B{\alpha}$) using western blot and also investigated survival of mice in LPS-mediated endotoxin shock. Results : 1. Extract from OK itself have weak cytotoxic effect on RAW264.7 cells. Extract from OK inhibited LPS-induced NO, tumor necrosis $factor-{\alpha}$ ($TNF-{\alpha}$), interleukin $(IL)-1{\beta}$, IL-6 and IL-10 production in RAW264.7 cells. 2. OK inhibited the phosphorylation of MAPKs, such as p38, extracelluar signal-regulated kinase (ERK1/2) and c-Jun NH2-terminal kinase (JNK) and also the degradation of $I{\kappa}-B{\alpha}$ in the LPS-stimulated RAW264.7 cells 3. OK did not inhibit LPS-induced endotoxin shock. Conclusions : OK down-regulated LPS-induced NO and cytokines production through suppressing activation of MAPKs and degradation of $I{\kappa}-B{\alpha}$. Our results suggested that OK may be a beneficial drug against inflammatory diseases.

  • PDF

Inhibitory Effect of 3-(4-Hydroxyphenyl)-1-(thiophen-2-yl) prop-2-en-1-one, a Chalcone Derivative on MCP-1 Expression in Macrophages via Inhibition of ROS and Akt Signaling

  • Kim, Mi Jin;Kadayat, Taraman;Um, Yeon Ji;Jeong, Tae Cheon;Lee, Eung-Seok;Park, Pil-Hoon
    • Biomolecules & Therapeutics
    • /
    • v.23 no.2
    • /
    • pp.119-127
    • /
    • 2015
  • Chalcones (1,3-diaryl-2-propen-1-ones), a subfamily of flavonoid, are widely known to possess potent anti-inflammatory and anti-oxidant properties. In this study, we investigated the effect of 3-(4-Hydroxyphenyl)-1-(thio3-(4-Hydroxyphenyl phen-2-yl)prop-2-en-1-one (TI-I-175), a synthetic chalcone derivative, on endotoxin-induced expression of monocyte chemoattractant protein-1 (MCP-1), one of the key chemokines that regulates migration and infiltration of immune cells, and its potential mechanisms. TI-I-175 potently inhibited MCP-1 mRNA expression stimulated by lipopolysaccharide (LPS) in RAW 264.7 macrophages without significant effect on cell viability. Treatment of cells with TI-I-175 markedly prevented LPS-induced transcriptional activation of activator protein-1 (AP-1) as measured by luciferase reporter assay, while nuclear factor-${\kappa}B$ (NF-${\kappa}B$) activity was not inhibited by TI-I-175, implying that TI-I-175 suppressed MCP-1 expression probably via regulation of AP-1. In addition, TI-I-175 treatment significantly inhibited LPS-induced Akt phosphorylation and led to a significant decrease in reactive oxygen species (ROS) production by LPS, which act as up-stream signaling events required for AP-1 activation in RAW 264.7 macrophages. Taken together, these results indicate that TI-I-175 suppresses MCP-1 gene expression in LPS-stimulated RAW 264.7 macrophages via suppression of ROS production and Akt activation.

Inhibitory Effect of Rosa davurica Pall. on LPS-mediated Nitric Oxide Productionvia NF-κB signaling (NF-κB signaling을 통한 Rosa davurica Pall.의 NO 생성 저해 효과)

  • Soon Pyo Kwon;Sun Ryung Lee
    • Journal of Life Science
    • /
    • v.33 no.1
    • /
    • pp.50-55
    • /
    • 2023
  • This study was designed to determine the activities of Rosa davurica Pall. leaf extract and their regulatory mechanisms in macrophage inflammation. Anti-inflammatory potential of Rosa davurica Pall. leaf extract was evaluated by measuring the nitric oxide (NO) release and inducible nitric oxide synthase (iNOS) synthesis in lipopolysaccharide (LPS)-treated macrophage Raw 264.7 cells. Rosa davurica Pall. leaf extract potently inhibited LPS-induced NO release in a dose dependent manner. However, cell viability decreased to about 50% at high dose of 500 ㎍/ml, resulting in cytotoxicity. LPS-induced iNOS protein expression was also reduced significantly after treatment with Rosa davurica Pall. leaf extract. Furthermore, extract of Rosa davurica Pall. attenuated LPS-mediated phosphorylation of IκB and nuclear factor (NF-κB). Suppression of NF-κB signaling by treatment with PDTC, an NF-κB specific inhibitor, accelerated the inhibition of NO production and iNOS protein expression. These results suggest that Rosa davurica Pall. exhibits the anti-inflammatory potential in LPS-induced macrophage inflammation, partly through inhibition of NO production by down-regulation of NF-κB signaling.

Inhibition of LPS-induced Inflammatory Biomarkers by Fraction of Citrus hassaku pericarp through Suppression of NF-${\kappa}B$ Activation in RAW264.7 Cells (재래감귤 팔삭의 과피 추출물이 LPS로 활성화 된 RAW264.7 대식세포에서 염증매개물질 억제에 미치는 효과)

  • Kim, Chul-Won;Kim, Sung-Moo;Jeong, Seung-Weon;K., So-Mi Cho;Ahn, Kwang-Seok
    • Journal of Korean Traditional Oncology
    • /
    • v.16 no.2
    • /
    • pp.25-34
    • /
    • 2011
  • Objectives : Citrus is the fruit that is readily available around us. Therefore, we investigated the anti-inflammatory effects of fraction isolated from the Citrus hassaku pericarp in RAW264.7 macrophage cells. Methods : The effects of fraction from Citrus hassaku pericarp on cell viability on RAW264.7 cells were measured by the MTT assay. The mRNA levels of iNOS and COX-2, its protein level by fraction of Citrus hassaku pericarp treatment in RAW264.7 macrophage cells were investigated by RT-PCR and immunoblots. Nitrite accumulation in the culture was measured colorimetrically by the Griess reaction using a Griess reagent. The amount of IL-6 and TNF-${\alpha}$ production was determined using an enzyme-linked immunosorbent assay (ELISA) kit. Results : The results indicated that the fraction of Citrus hassaku pericarp concentration highly suppressed lipopolysaccharide (LPS)-induced nitric oxide (NO) and IL-6 productions without a cytotoxic effect on RAW264.7 cells. fraction of Citrus hassaku pericarp inhibited the expressions of LPS-induced iNOS and COX-2 protein and their mRNA in a dose-dependent manner. Particularly, fraction of Citrus hassaku pericarp suppressed the level of nuclear factor-${\kappa}B$ (NF-${\kappa}B$) activity, which was linked with the suppression of LPS-induced phosphorylation of p65 at serine 276 and p65 translocation into nuclei, but not MAPK signaling. In addition, treatment with fraction of Citrus hassaku pericarp inhibited the production of IL-6 and TNF-${\alpha}$ in LPS-stimulated RAW264.7 cells. Conclusion : Our results indicate that fraction of Citrus hassaku pericarp potentially inhibits the biomarkers related to inflammation through the blocking of NF-${\kappa}B$ p65 activation, and it may be a potential therapeutic candidate for the treatment of inflammatory diseases.

Anti-inflammatory Effect of Cheukbaekjurpihwan(CBJPH) (측백저피환(側柏樗皮丸)의 항염(抗炎) 및 면역반응(免疫反應)에 대한 실험적(實驗的) 연구(硏究))

  • Jo, Ok-Hyun;Choi, Chang-Min
    • The Journal of Korean Obstetrics and Gynecology
    • /
    • v.21 no.2
    • /
    • pp.152-165
    • /
    • 2008
  • Purpose: It is the purpose of this study to investigate the anti-inflammatory effects and mechanism of cheukbaekjurpihwan(CBJPH) extract on LPS (lipopolysaccharide)-induced inflammatory mediators in murine peritoneal macrophages. Methods: To evaluate anti-inflammatory effects of CBJPH extract, the production of cytokines(TNF-${\alpha}$(tumor necrosis factor-alpha), IL(interleukin)-6, IL-12) and NO(nitric oxide) was measured in vitro and in vivo. And western blot analysis has been done to look into the mechanism. Results: CBJPH extract reduced LPS-induced NO, TNF-${\alpha}$ and IL-6, IL-12 productions in peritoneal macrophages. CBJPH extract inhibited the activation of JNK(c-Jun N-terminal kinase), but didn't inhibit the activation of MAPKs (mitogen-activated protein kinases) such as p38, ERK1/2(extracelluar signal-regulated kinase1/2) and the degradation of $I_{\kappa}B-{\alpha}$(inhibitory kappa B-alpha) in the LPS-stimulated peritoneal macrophages. CBJPH extract suppressed LPS-induced endotoxin shock and the productions of TNF-${\alpha}$, but not of IL-6, after an oral administration of CBJPH extract Conclusion: CBJPH extract suppressed the productions of LPS-induced NO and cytokines by preventing JNK from phosphorylation, which may provide a clinical basis for anti-inflammatory properties of CBJPH.

  • PDF

Ethanol extract of Synurus deltoides (Aiton) Nakai suppresses in vitro LPS-induced cytokine production in RAW 264.7 macrophages and in vivo acute inflammatory symptoms

  • Jiang, Yunyao;Wang, Myeong-Hyeon
    • Nutrition Research and Practice
    • /
    • v.8 no.1
    • /
    • pp.11-19
    • /
    • 2014
  • Synurus deltoides (Aiton) Nakai, belonging to the Compositae family, is an edible plant widely distributed in Northeast Asia. In this study, we examined the mechanisms underlying the immunomodulative effects of the ethanol extract of S. deltoides (SDE). The SDE extract strongly down-regulated the mRNA expression of the inducible nitric oxide synthase (iNOS), cyclooxygenase-2 (COX-2), and tumour necrosis factor (TNF)-${\alpha}$, thereby inhibiting the production of nitric oxide (NO), prostaglandin E2 (PGE2), and TNF-${\alpha}$ in the lipopolysaccharide (LPS)-stimulated RAW 264.7 cells. Furthermore, SDE also suppressed the nuclear translocation of the activation protein (AP)-1 and the nuclear factor-${\kappa}B$ (NF-${\kappa}B$), and simultaneously decreased the phosphorylation of extracellular signal-regulated protein kinases (ERK), p38, and Akt. In agreement with the in vitro observations, the orally administered SDE ameliorated the acute inflammatory symptoms in the arachidonic acid-induced ear edema and the EtOH/HCl-induced gastritis in mice. Therefore, S. deltoides have a potential anti-inflammatory capacity in vitro and in vivo, suggesting the potential therapeutic use in the inflammation-associated disorders.

Inhibitory Effect of Curcumin on Nitric Oxide Production in Lipopolysaccharide-Stimulated RAW264.7 Cells and Its Suppressive Mechanism (대식세포주 RAW264.7 세포에서 Curcumin의 Lipopolysaccharide에 의한 Nitric Oxide 생성 억제 효과)

  • Lee, Yong-Gyu;Cho, Jae-Youl
    • Korean Journal of Medicinal Crop Science
    • /
    • v.15 no.6
    • /
    • pp.451-456
    • /
    • 2007
  • Curcumin, a polyphenolic antioxidant purified from turmeric, has been known to possess various biological activities such as anti-oxidative, anti-inflammatory and anti-cancer effects. In this study, we have explored anti-inflammatory effect of curcumin using Gram (-) bacterium-derived endotoxin (lipopolysaccharide: LPS) and macrophage cell line RAW264.7. Curcumin suppressed NO production in LPS-activated RAW264.7 cells in a dose-dependent manner, Curcumin also blocked the activation of $NF-{\kappa}B$ but not AP-1 according to luciferase assay. Furthermore, this compound suppressed the phosphorylation of a series of intracellular signaling components such as Src, JAK-2, Akt, IKK and $I{\kappa}B{\alpha}$ under LPS stimulation in a time dependent manner, Therefore, our data suggest that curcumin was able to protect the host from Gram(-) bacterial-infection-mediated inflammatory symptoms.

Eryngium foetidum Suppresses Inflammatory Mediators Produced by Macrophages

  • Mekhora, Chusana;Muangnoi, Channarong;Chingsuwanrote, Pimjai;Dawilai, Suwitcha;Svasti, Saovaros;Chasri, Kaimuk;Tuntipopipat, Siriporn
    • Asian Pacific Journal of Cancer Prevention
    • /
    • v.13 no.2
    • /
    • pp.653-664
    • /
    • 2012
  • Objective: This study assessed anti-inflammatory and antioxidant activities of $E.$ $foetidum$ leaf extract on LPS-activated murine macrophages. Methods: RAW264.7 cells were pretreated with or without $E.$ $foetidum$ extract for 1 h prior to incubation with LPS for 24 h. Anti-inflammatory activity was evaluated with reference to iNOS, COX-2, TNF-${\alpha}$ and IL-6 gene expression. In addition, NO and intracellular ROS generation were determined by Griess method and fluorescence intensity and activation of MAPKs and $I{\kappa}B$ by Western blotting. Results: Prior treatment with $E.$ $foetidum$ leaf extract inhibited elevation of IL-6, TNF-${\alpha}$, iNOS and COX-2, together with their cognate mRNAs in a dose-dependent manner. NO and intracellular ROS contents were similarly reduced. These effects were due to inhibition of LPS-induced phosphorylation of JNK and p38 as well as $I{\kappa}B$. $E.$ $foetidum$ ethanol extract were shown to contain lutein, ${\beta}$-carotene, chlorogenic acid, kaempferol and caffeic acid, compounds known to exert these bioactive properties. Conclusions: $E.$ $foetidum$ leaf extract possesses suppressive effects against pro-inflammatory mediators. Thus, $E.$ $foetidum$ has a high potential to be used as a food supplement to reduce risk of cancer associated with inflammation.