• Title/Summary/Keyword: I/Q signal

Search Result 141, Processing Time 0.025 seconds

A Study on Design and Implementation of Hangul-NAVTEX Simulator (한글 NAVTEX시뮬레이터 설계 및 구현에 관한 연구)

  • 이헌택;김기문
    • Journal of the Korea Institute of Information and Communication Engineering
    • /
    • v.3 no.4
    • /
    • pp.819-830
    • /
    • 1999
  • NAVTEX system is an international automated direct-printing service, broadcast on 5181kHz and 490kHz, for the promulgation of navigational and meteorological warnings and urgent information to ships. With our government's adoption of the international convention for SAR(Search and Rescue) in 1993, various trials for the installation of NAVTEX system have been executed by the government committee, relating laboratory and experts. An important consideration of the installation for NAVTEX system is the availability that could broadcast messages written in korean letter. Also, the receiver which can process the signal demodulated from the two frequencies, 518kHz and 490kHz, should be developed and supplied in domestic. In this paper, the code table and algorithm for conversions between NAVTEX characters and Korean Letters are studied, and signal processing techniques of code conversion are developed. Circuit design and implementation of the NAVTEX simulator using the Direct Digital Synthesizer are discussed, code conversion algorithm and signal processing technique of the NAVTEX transmission are programmed in its circuits. For evaluating the its functional characteristics, receiving module which has I-Q channel structure is designed. From the measurements of simulator, the characteristics show the frequency stability of the $(\pm)2Hz$ and Spurious free dynamic range is -63dBc. And the simulator can generate simultaneously wanted signal and several interfere signals. So, its capability is valuable for designers of the transmitting system and NAVTEX receiver, for provider as testing facilities of the type approval.

  • PDF

Novel Rate Control Scheme for Low Delay Video Coding of HEVC

  • Wu, Wei;Liu, Jiong;Feng, Lei
    • ETRI Journal
    • /
    • v.38 no.1
    • /
    • pp.185-194
    • /
    • 2016
  • In this paper, a novel rate control scheme for low delay video coding of High Efficiency Video Coding (HEVC) is proposed. The proposed scheme is developed by considering a new temporal prediction structure of HEVC. In the proposed scheme, the relationship between bit rate and quantization step is exploited firstly to formulate an accurate quadratic rate-quantization (R-Q) model. Secondly, a method of determining the quantization parameters (QPs) for the first frames within a group of pictures is proposed. Thirdly, an accurate frame-level bit allocation method is proposed for HEVC. Finally, based on the proposed R-Q model and the target bit allocated for the frame, the QPs are predicted for coding tree units by using rate-distortion (R-D) optimization. We compare our scheme against that of three other state-of-the-art rate control schemes. Experimental results show that the proposed rate control scheme can increase the Bjøntegaard delta peak signal-to-noise ratio by 0.65 dB and 0.09 dB on average compared with the JCTVC-I0094 and JCTVC-M0036 schemes, respectively, both of which have been implemented in an HEVC test model encoder; furthermore, the proposed scheme achieves a similar R-D performance to Wang's scheme, as well as obtaining the smallest bit rate mismatch error of all the schemes.

Secondary Code Determination and Signal Processing Results of GIOVE-B E5a (GIOVE-B 위성 E5a Secondary Code 결정 및 신호처리 결과)

  • Joo, In-One;Shin, Chun-Sik;Lee, Sang-Uk;Kim, Jae-Hoon
    • Journal of the Korean Society for Aviation and Aeronautics
    • /
    • v.16 no.4
    • /
    • pp.12-19
    • /
    • 2008
  • GIOVE-B is the second experimental Galileo satellite for the Galileo In-Orbit Validation, which was launched by a Soyuz/Fregat rocket departing from the Baikonur cosmodrome in Kazakhstan on 27 April and now operated successfully. This paper presents the results obtained from processing of the E5a signal transmitted from the GIOVE-B. The acquisition and tracking of the data and pilot channels are performed by the E5a software receiver implemented by ETRI. Moreover, the paper suggests the GIOVE-B E5a-I/E5a-Q secondary code, which is determined by analyzing the correlation output of the primary correlator using the primary code.

  • PDF

Active Implantable Device Technology Trend: BCI Application Focus (능동형 임플란터블 디바이스 기술동향: BCI 응용 중심)

  • Lee, S.Q.;Byun, C.W.;Kim, Y.G.;Park, H.I.
    • Electronics and Telecommunications Trends
    • /
    • v.32 no.6
    • /
    • pp.27-39
    • /
    • 2017
  • A variety of medical devices are utilized to repair or help injured body functions after accidental injury(such as a traffic accident), population aging, or disease. Such medical devices are being actively researched and developed in portable form, skin patchable type, and further, implantable form. In the future, active implantable medical devices for neuro and brain sciences are expected to be developed. Active implantable medical devices that detect brain signals and control neurology for a wider understanding of human cognition and nerve functions, and for an understanding and treatment of various diseases, are being actively pursued for future use. In this paper, the core elements of implantable devices that can be applied to neuro and brain sciences are classified into electrode technologies for bio-signal acquisition and stimulation, analog/digital circuit technologies for signal processing, human body communication technologies, wireless power transmission technologies for continuous device use, and device integration technologies to integrate them. In each chapter, the latest technology development trends for each detailed technology field are reviewed.

Doppler Radar System for Noncontact Bio-signal measurement (비접촉 방식의 생체 신호 측정을 위한 도플러 레이더 시스템)

  • Shin, Jae-Yeon;Cho, Sung-Pil;Jang, Byung-Jun;Park, Ho-Dong;Lee, Yun-Soo;Lee, Kyoung-Joung
    • Proceedings of the IEEK Conference
    • /
    • 2009.05a
    • /
    • pp.357-359
    • /
    • 2009
  • In this paper, the 2.4GHz doppler radar system consisting of the doppler radar module and a baseband module were designed to detect heartbeat and respiration signal without direct skin contact. A bio-radar system emits continuous RF signal of 2.4GHz toward human chest, and then detects the reflected signal so as to investigate cardiopulmonary activities. The heartbeat and respiration signals acquired from quadrature signal of the doppler radar system are applied to the pre-processing circuit, amplification circuit, and the offset circuit of the baseband module. ECG(electrocardiogram) and reference respiration signals are measured simultaneously to evaluate the doppler radar system. As a result, the respiration signal of doppler radar signal is detected to 1m without complex digital signal processing. The sensitivity and calculated from I/Q respiration signal were $98.29{\pm}1.79%$, $97.11{\pm}2.75%$, respectively, and positive predictivity were $98.11{\pm}1.45%$, $92.21{\pm}10.92%$, respectively. The sensitivity and positive predictivity calculated from phase and magnitude of the doppler radar were $95.17{\pm}5.33%$, $94.99{\pm}5.43%$, respectively. In this paper, we confirmed that noncontact real-time heartbeat and respiration detection using the doppler radar system has the possibility and limitation.

  • PDF

Design of SW Framework for Airborne Radar Real-time Signal Processing using Modular Programming (모듈화를 활용한 항공기 레이다 실시간 신호처리 SW Framework 설계)

  • Jihyun, Lee;Changki, Lee;Taehee, Jeong
    • Journal of the Korea Institute of Information and Communication Engineering
    • /
    • v.27 no.1
    • /
    • pp.76-86
    • /
    • 2023
  • Radars used by air-crafts have two important characteristics; First, they should have a real-time signal processing system finishing signal processing before deadline while getting and processing successive in-phase and quadrature data. Second, they can cover a lot of modes including A2A(Air to Air), A2G(Air to Gound), A2S(Air to Sea), and Ground Map(GM). So the structure of radar signal processing SWs in modern airborne radars are becoming more complicate. Also, the implementation of radar signal processing SW needs to reuse common code blocks between other modes for efficiency or change some of the code blocks into alternative algorithm blocks. These are the reason why the radar signal processing SW framework suggested in this paper is taking advantage of modular programming. This paper proposes an modular framework applicable on the airborne radar signal processing SW maintaining the real-time characteristic using the signal processing procedures for A2G/A2S as examples.

Loss of Heterozygosity on the Long Arm of Chromosome 21 in Non-Small Cell Lung Cancer (비소세포폐암에서 21q 이형체 소실)

  • Chai, Po-Hee;Bae, Nack-Cheon;Lee, Eung-Bae;Park, Jae-Yong;Kang, Kyung-Hee;Kim, Kyung-Rok;Bae, Moon-Seob;Cha, Seung-Ik;Chae, Sang-Chul;Kim, Chang-Ho;Jung, Tae-Hoon
    • Tuberculosis and Respiratory Diseases
    • /
    • v.50 no.6
    • /
    • pp.668-675
    • /
    • 2001
  • Background : Non-smalll lung cancer(NSCLC) develops as a result of the accumulation of multiple genetic abnormalities. Loss of heterozygosity(LOH) is one of the most frequent genetic alterations that is found in NSCLC, and the chromosomal regions that display a high rate of LOH are thought to harbor tumor suppressor genes(TSGs). This study was done to determine the frequency of LOH in 21q with the aim of identifying potential TSG loci. Method : Thirty-nine surgically resected NSCLCs were analysed. Patients peripheral lymphocytes were used as the source of the normal DNA. Five microsatellite Inarkers of 21q were used to study LOH : 21q21.1(D21S1432, and D21S1994); 21q21.2-21.3(D21S1442) ; 21q22.1(21S1445) ; and 21q22.2-22.3(D21S266). The fractional allelic loss(FAL) in a tumor was calculated as the ratio of the number of markers showing LOH to the number of informative markers. Result : LOH for at least one locus was detected in 21 of 39 tumors(53.8%). Among the 21 tumors with LOH, 5(21.8%) showed LOH at almost all informative loci. Although statistically not significant, LOH was found more frequently in squamous cell carcinomas(15 of 23, 65.2%) than in adenocarcinomas(6 of 16, 37.5%). In the squamous cell carcinomas the frequency of LOH was higher in stage II-III (80.0%) than in stage I (53.8%). The FAL value in squamous cell carcinomas($0.431{\pm}0.375$) was significantly higher than that found in adenocarcinomas($0.l92{\pm}0.276$). Conclusion : These results suggest that LOH on 21q may be involved in the development of NSCLC, and that TSG(s) that contribute to the pathogenesis of NSCLC may exist on 21q.

  • PDF

A Multipath Delay Time Detection Method For $\frac{\pi}{4}$ Shift QPSK Modulation Under The Frequency Selective Fading Environment (주파수 선택성 페이딩 환경하에서 $\frac{\pi}{4}$ shift QPSK 변조방식에 대한 다중파의 시간지역 검출법 제안)

  • 조병진;김대영
    • The Journal of Korean Institute of Communications and Information Sciences
    • /
    • v.16 no.10
    • /
    • pp.941-950
    • /
    • 1991
  • channel is severely degraded by multipath delay time spread. In this paper. We propose a simple multipath delay time detection method, which has a merit of in serviceable, yet simple H/W realizability for $\pi/4$ shift QPSK by detecting cross channel interference. A $\pi/4$ shift QPSK signal originally has quadrature channel(Q-ch) component. Thus in order to measure CCI between in-phase channel(I-ch) and quadrature channel(Q-ch), which closely related to multipath delay time, Frequency doubling scheme(frequency doubler) and differential detector is proposed, which makes $\pi/4$ shift QPSK signal look like BPSK and also makes it possible for CCI to be detected at I-ch detector output. To get an information from time varying I-ch output signal under the multipath lading environment, a method for obtaining the mean of the absolute value$(V_{MABS}(t))$ and another one for obtaining the root mean square value$(V_{RMS}(t))$ of CCI are proposed. Furthermore, a relationship between delay spread and CCI is also analyzed. In order to confirm theoretical results, computer simulation has been carried out under the quasi-static and Reyleigh distributed two ray multipath fading environments. A fairly good result was obtained. However it was also shown that this method is sensitive to bandwidth restriction to some extent. In addition, some idea for a simple hardware realization for the frequency doubler are given.

  • PDF

A Study of Noncontact Heartbeat and Respiration Detection Using the Doppler Radar (도플러 레이더를 이용한 비접촉 방식의 심박 및 호흡 검출에 관한 연구)

  • Shin, Jae-Yeon;Cho, Sung-Pil;Jang, Byung-Jun;Park, Ho-Dong;Lee, Yun-Soo;Lee, Kyoung-Joung
    • Journal of the Institute of Electronics Engineers of Korea SC
    • /
    • v.46 no.1
    • /
    • pp.1-9
    • /
    • 2009
  • In this paper, a 2.4 GHz doppler radar system consisting of a doppler radar sensor and a baseband module were designed to detect heart beat and respiration signal without direct skin contact. The doppler radar system emits RF signal of 2.4 GHz toward human chest, and then detects phase modulation of the reflected signal so as to investigate cardiopulmonary activities. The heartbeat and respiration signals acquired from I/Q channels of the doppler radar system are applied to the pre-processing circuit, the amplification circuit, and the offset circuit of the baseband module. The designed system was tested on mouse, rabbit and mankind, which have different range of heart rates and respiration signals, to evaluate detection accuracy of the system. ECG acquisition system and respiration transducer were used to generate the reference signal. In our experiments, a performance of detection were found to be high in the case that the subject stays still. In this paper, we confirmed that non-contact heart beat and respiration detection using the doppler radar has the possibility and limitation according to distance, cardiopulmonary activities, range of heart rates and respiration.

Doppler Radar System for Long Range Detection of Respiration and Heart Rate (원거리에서 측정 가능한 호흡 및 심박 수 측정을 위한 도플러 레이더 시스템)

  • Lee, Jee-Hoon;Kim, Ki-Beom;Park, Seong-Ook
    • The Journal of Korean Institute of Electromagnetic Engineering and Science
    • /
    • v.25 no.4
    • /
    • pp.418-425
    • /
    • 2014
  • This paper presents a Ku-Band Doppler Radar System to measure respiration and heart rate. It was measured by using simultaneous radar and ECG(Electrocardiogram). Arctangent demodulation without dc offset compensation can be applied to transmitted I/Q(In-phase & Quadrature-phase) signal in order to improve the RMSE(Root Mean Square Error) about 50 %. The power leaked to receiving antenna from the transmitting antenna is always generated because of continuously opening the transceiver of CW(Continuous Wave) Doppler radar. As the output power increase, leakage power has an effect on the SNR(Signal-to-Noise Ratio) of the system. Therefore, in this paper, leakage cancellation technique that adds the signal having the opposite phase of the leakage power to the leakage power was implemented in order to minimize the decline of receiver sensitivity. By applying the leakage cancellation techniques described above, it is possible to measure the heart rate and respiration of the human at a distance of up to 35 m. the heart rate of the measured data at a distance of 35 m accords with the heart rate extracted from the ECG data.