• Title/Summary/Keyword: I/Q Imbalance

Search Result 22, Processing Time 0.021 seconds

Analysis and Compensation of I/Q Amplitude Imbalance In Coherent PON Systems (코히어런트 PON시스템의 I/Q 진폭불균형 분석 및 보상)

  • Kim, Nayeong;Lee, Seungwoo;Park, Youngil
    • The Journal of Korean Institute of Communications and Information Sciences
    • /
    • v.40 no.10
    • /
    • pp.1940-1946
    • /
    • 2015
  • An optical coherent system is considered for the next-generation optical access networks in enhancing the data rate and transmission distance. In this system, however, I/Q amplitude imbalance may occur at several parts of the system, leading to serious performance degradation. Asymmetric structure of a coherent receiver at the location of subscriber is one of the sources of I/Q imbalance. Therefore, this imbalance parameters must be removed or compensated to secure the transmission performance. In this paper, the source of I/Q amplitude imbalance is analyzed, and then the way to compensate for the imbalance at the receiver side is suggested. Performance after the compensation is estimated using simulation.

A Detection Method for An OFDM Signal Distorted by I/Q Imbalance (I/Q 불균형에 의하여 왜곡된 OFDM 신호의 검출방식)

  • Park Kyung-won;Cho Yong-soo
    • The Journal of Korean Institute of Communications and Information Sciences
    • /
    • v.30 no.1A
    • /
    • pp.37-45
    • /
    • 2005
  • In this paper, after analyzing the effect of I/Q imbalance in an OFDM system, the detection method of an OFDM signal distorted by I/Q imbalance is proposed. Also, the channel estimation and the pilot symbol design scheme are proposed for using the proposed detection method. Since I/Q imbalance in an OFDM system degrades the SIR and the BER(Bit Error Ratio) performance, the robust detection method is required for an OFDM system. the proposed detection method can effectively suppress the interference caused by I/Q imbalance using characteristics of an OFDM signal differently from the conventional method, and results in improving the SIR of a desired OFDM signal.

Estimation of I/Q Imbalance Parameters for Repeater using Direct Conversion RF with Low Pass Filter Mismatch (저역 통과 필터 불일치를 포함한 직접 변환 RF 중계기의 I/Q 불균형 파라미터 추정)

  • Yun, Seonhui;Lee, Kyuyong;Ahn, Jaemin
    • Journal of the Institute of Electronics and Information Engineers
    • /
    • v.52 no.2
    • /
    • pp.18-26
    • /
    • 2015
  • In this paper, we studied the method for analyzing and estimating the parameters that induce I/Q imbalance in the repeater using direct conversion RF. In repeater, amplitude, phase, and filter mismatch are generated in the receiving-end which converts RF signal to baseband signal. And amplitude and phase mismatch are generated in the transmitting-end which converts baseband signal to RF signal. Accordingly, we modeled the parameters that cause I/Q imbalance in the structure of the repeater in order, and proposed a feedback test structure from the transmitting-end to the receiving-end for estimating the corresponding parameters. By comparing the test transmitting signal and received signal, it is possible to estimate the I/Q imbalance parameters which occurred from mixed components of real and imaginary part. And it was confirmed that I/Q imbalance phenomenon has been properly compensated with estimated parameters at the direct conversion RF repeater.

I/Q Imbalance Compensation Method for the Direct Conversion Receiver with Low Pass Filter Mismatch (저역 통과 필터 불일치를 포함한 직접 변환 수신기의 I/Q 불균형 보상 기법)

  • Yun, Seonhui;Ahn, Jaemin
    • Journal of the Institute of Electronics and Information Engineers
    • /
    • v.51 no.11
    • /
    • pp.3-10
    • /
    • 2014
  • Direct conversion receiver(DCR) gets noticed for integration and cost reduction of wireless communication systems instead of the heterodyne receiver which uses complex filter. But DCR has several factors in performance degradation. One of them is I/Q imbalance phenomenon, that is amplitude and phase mismatch between real and imaginary part of receiver. Accordingly, researches are being carried to improve the I/Q imbalance problem. However, the tendency of the broaden bandwidth of communication systems, low pass filter(LPF) mismatch problem affects severely in I/Q mismatch phenomenon at the DCR. To study this problem, we generated 10MHz broadband signal and shifted it ${\pm}8MHz$ from the center frequency. The signal is affected by LPF mismatch and it appears as frequency selective distortion. Thus, LPF mismatch model is added to I/Q imbalance model which conventionally dealt with amplitude and phase mismatches. In addition, we proposed the compensation method for each factors of mismatch. As the simulation results, the proposed I/Q mismatch compensator resolves the frequency selective distortion which occurred by the existing LPF mismatch.

A Novel Method for Rejection of the Spurious Signal in Weaver-Type Up-Conversion Mixer (위버구조 상향변환 혼합기의 스퓨리어스 신호 제거 방법)

  • 김영완;송윤정;김유신;이창석
    • The Journal of Korean Institute of Electromagnetic Engineering and Science
    • /
    • v.15 no.7
    • /
    • pp.661-668
    • /
    • 2004
  • A novel method to reject the spurious signals which are occurred at Weaver-type low-IF transmitter was proposed in this paper. The spurious signals are generated by the gain and phase imbalances of I/Q channel or imperfect characteristics of 90$^{\circ}$ phase shifter in local oscillator for I/Q channel source. By deriving the gain and phase-based functions from RF spurious signal with the channel imbalance information, the lie channel imbalances were deduced as functions with magnitude and sign dependent on I/Q channel imbalance degree. The proposed method compensates the estimated I/Q channel imbalances by correlation values between the down-converted signal obtained by squaring the output signal itself using a simple mixer and the modified baseband signal. By comparing two signals after A/D conversion, the magnitude and sign of each type of imbalances can be determined separately and simultaneously. Based on the I/Q channel imbalance compensation, the spurious signals can be reduced by adjusting the gain and phase values of I or Q channel signal. The way to estimate the channel imbalances of the up-conversion mixer was presented and verified by using theoretical derivations and computer simulations.

A Novel Modeling and Performance Analysis of Imperfect Quadrature Modulator in RF Transmitter

  • Park, Yong-Kuk;Kim, Hyeong-Seok;Lee, Ki-Sik
    • Journal of Electrical Engineering and Technology
    • /
    • v.7 no.4
    • /
    • pp.570-575
    • /
    • 2012
  • In a wireless communication RF transmitter, the output of a quadrature modulator (QM) is distorted by not only the linear imperfection features such as in/quadrature-phase (I/Q) input gain imbalance, local phase imbalance, and local gain imbalance but also the nonlinear imperfection features such as direct current (DC) offset and mixer nonlinearity related to in-band spurious signal. In this paper, we propose the unified QM model to analyze the combined effects of the linear and nonlinear imperfection features on the performance of the QM. The unified QM model consists of two identical nonlinear systems and modified I/Q inputs based on the two-port nonlinear mixer model. The unified QM model shows that the output signals can be expressed by mixer circuit parameters such as intercept point and gain as well as the imperfection features. The proposed approach is validated by not only simulation but also measurement.

FPGA Implementation of I/Q Imbalance Estimator in OFDM System (OFDM 시스템에서 I/O 불평형 추정기의 FPGA 구현)

  • Byon, Kun-Sik;Kim, Jin-Su
    • Journal of the Korea Institute of Information and Communication Engineering
    • /
    • v.13 no.9
    • /
    • pp.1803-1810
    • /
    • 2009
  • This paper designed IQ imbalance estimator and compensator to cancel the IQ imbalance error in DVB-T system using OFDM by Matlab. Among Matlab model, we designed and implemented IQ imbalance estimator and compensator by System Generator of Xilinx and Matlab model compared with Xilinx System Generator Model for FPGA implementation. As a result of simulation, we confirmed that both model estimated and compensated IQ imbalance error very well. Also, we verified the performance through hardware co-simulation, timing analysis and resource estimation with Xilinx Spartan3 xc3s1000 fg676-4 target Device.

A Novel Compensation Scheme for I/Q Mismatch in an OFDM Direct-Conversion Architecture (OFDM 전송방식 기반의 Direct-Conversion 수신기에서 I/Q 불균형 보상을 위한 새로운 방법 제안)

  • Bae, Jung-Hwa;Park, Jin-Woo
    • The Journal of Korean Institute of Communications and Information Sciences
    • /
    • v.31 no.12C
    • /
    • pp.1265-1272
    • /
    • 2006
  • This paper proposes a compensation method that can alleviate the problem of I/Q mismatch generated in the direct-conversion receiver of OFDM systems. In the proposed method, the amount of I/Q mismatch is estimated using null-carriers in transmitted signals, and it is subtracted from received symbols to suppress I/Q mismatch effects. Simulations show experiments that the proposed method can effectively eliminate the I/Q mismatch effects.

Widely-Linear Beamforming and RF Impairment Suppression in Massive Antenna Arrays

  • Hakkarainen, Aki;Werner, Janis;Dandekar, Kapil R.;Valkama, Mikko
    • Journal of Communications and Networks
    • /
    • v.15 no.4
    • /
    • pp.383-397
    • /
    • 2013
  • In this paper, the sensitivity of massive antenna arrays and digital beamforming to radio frequency (RF) chain in-phase quadrature-phase (I/Q) imbalance is studied and analyzed. The analysis shows that massive antenna arrays are increasingly sensitive to such RF chain imperfections, corrupting heavily the radiation pattern and beamforming capabilities. Motivated by this, novel RF-aware digital beamforming methods are then developed for automatically suppressing the unwanted effects of the RF I/Q imbalance without separate calibration loops in all individual receiver branches. More specifically, the paper covers closed-form analysis for signal processing properties as well as the associated radiation and beamforming properties of massive antenna arrays under both systematic and random RF I/Q imbalances. All analysis and derivations in this paper assume ideal signals to be circular. The well-known minimum variance distortionless response (MVDR) beamformer and a widely-linear (WL) extension of it, called WL-MVDR, are analyzed in detail from the RF imperfection perspective, in terms of interference attenuation and beamsteering. The optimum RF-aware WL-MVDR beamforming solution is formulated and shown to efficiently suppress the RF imperfections. Based on the obtained results, the developed solutions and in particular the RF-aware WL-MVDR method can provide efficient beamsteering and interference suppressing characteristics, despite of the imperfections in the RF circuits. This is seen critical especially in the massive antenna array context where the cost-efficiency of individual RF chains is emphasized.

Novel allocation method of tiles in Subchannel for I/Q imbalances Estimation in WiBro uplink (WiBro 상량링크에서 I/Q 불균형 성분을 추정하기 위한 새로운 부채널 할당 방식)

  • Kim, Hye-Jin;Jin, Young-Hwan;Ahn, Jae-Min
    • The Journal of Korean Institute of Communications and Information Sciences
    • /
    • v.32 no.11A
    • /
    • pp.1146-1153
    • /
    • 2007
  • In this paper, we analyze the I/Q imbalances effects at the WiBro uplimk when using direct-conversion RF transceiver. If I/Q imbalance exists, the transmit signal is spread over two sbcarriers. As a result, phenomenon of performance reducing is produced. Contrary to OFDM system in which one user uses all subcarrier, symmetrical two subcarriers are assigned other users in OFDMA system. I/Q imbalances elements can't be estimated such a conventional allocation method of tiles in subchannel and compensated. In order to solve the problem, We propose a new method in order that symmetrical two subcarriers are assigned one user. If novel method is applied, we can estimate I/Q imbalances and compensate distortion received signal. As a result, we can obtain a performance similar performance when I/Q imbalances is not existed. Also, if proper detection methods are used, we get the effect of performance improvement, because of diversity gain what is happened due to combining I/Q imbalances with multi path fading channel.