• Title/Summary/Keyword: Hysteresis motor

Search Result 172, Processing Time 0.02 seconds

Characteristic Analysis of C-dump Converter Topology for SRM of Electric Multiple Unit Door Driving (전동차 출입문 구동을 위한 SRM용 C-dump 컨버터 Topology 특성 비교)

  • Yoon, Yong-Ho
    • The Transactions of The Korean Institute of Electrical Engineers
    • /
    • v.65 no.9
    • /
    • pp.1597-1604
    • /
    • 2016
  • The speed at which the SRM (Switched Reluctance Motor) makes a transition from chopping control to single pulse operation. (i.e., low speed to high speed operation). It is unsatisfied with performance at all operational regimes. In this paper, the operational performance of SRM can be improved by using current hysteresis control method. This method maintains a generally flat current waveform. At the high speed, the current chopping capability is lost due to the development of the back-EMF. Therefore SRM operates in single pulse mode. By using zero-current switching and zero-voltage switching technique, the stress of power switches can be reduce in chopping mode. When the commutation from one phase winding to another phase winding, the current can be zero as fast as possible in this period because several times negative voltage of DC-source voltage produce in phase winding. This paper is compared to performance based on energy efficient C-dump converter topology and the proposed resonant C-dump converter topology. Simulation and experimental results are presented to verify the effectiveness of the proposed circuit.

Modeling and Experimental Validation of 5-level Hybrid H-bridge Multilevel Inverter Fed DTC-IM Drive

  • Islam, Md. Didarul;Reza, C.M.F.S.;Mekhilef, Saad
    • Journal of Electrical Engineering and Technology
    • /
    • v.10 no.2
    • /
    • pp.574-585
    • /
    • 2015
  • This paper aims to improve the performance of conventional direct torque control (DTC) drives proposed by Takahashi by extending the idea for 5-level inverter. Hybrid cascaded H-bridge topology is used to achieve inverter voltage vector composed of 5-level of voltage. Although DTC is very popular for its simplicity but it suffers from some disadvantages like- high torque ripple and uncontrollable switching frequency. To compensate these shortcomings conventional DTC strategy is modified for five levels voltage source inverter (VSI). Multilevel hysteresis controller for both flux and torque is used. Optimal voltage vector selection from precise lookup table utilizing 12 sector, 9 torque level and 4 flux level is proposed to improve DTC performance. These voltage references are produced utilizing a hybrid cascaded H-bridge multilevel inverter, where inverter each phase can be realized using multiple dc source. Fuel cells, car batteries or ultra-capacitor are normally the choice of required dc source. Simulation results shows that the DTC drive performance is considerably improved in terms of lower torque and flux ripple and less THD. These have been experimentally evaluated and compared with the basic DTC developed by Takahashi.

DC link voltage control method in the sinusoidal current drive system for dental hand-piece PMSM (치과 핸드피스용 고속 PMSM의 정현파 구동을 위한 인버터 직류 링크전압 제어기법)

  • Jeon, Geum-Sang;Park, Jae-Seung;Park, Sang-Uk;Kim, Sang-Hee;Ahn, Hee-Wook
    • Journal of the Korean Society of Manufacturing Process Engineers
    • /
    • v.12 no.4
    • /
    • pp.16-21
    • /
    • 2013
  • This paper presents a DC link voltage control method to reduce the ripple current and the switching loss in the sinusoidal current drive system for the wide-speed range PMSM. The DC link voltage of the three phase inverter in the sinusoidal current drive system is designed by the back-EMF voltage at maximum speed of the PMSM. In general, the drive systems have used the constant DC link voltage without reference to the motor speed. The current ripple causes hysteresis loss and makes noise. In addition, the switching loss on the inverter increases in proportion to the rise in the DC link voltage. In this paper, we propose the variable DC link voltage control method to reduce the current ripple in the PMSM drive system. We show reduction effect of the current repple and the switching loss through simulation results.

Performance Loss & Heat Transfer Characteristics of Synchronous Motors under Various Driving Conditions (구동 조건 변화에 따른 동기 전동기의 성능 손실 및 내부 열전달 특성)

  • Choi, Moon Suk;Um, Sukkee
    • Transactions of the Korean Society of Automotive Engineers
    • /
    • v.21 no.3
    • /
    • pp.165-173
    • /
    • 2013
  • Core loss has a major effect on heat generation in synchronous motors with surface-mounted permanent magnets (SPMs). It is essential to perform heat transfer analysis considering core loss in SPM because core loss is seriously affected by torque and speed of motors. In the present study, mechanical loss, core loss and coil loss are evaluated by measuring input and output energies under various driving conditions. For a better understanding heat transfer paths in synchronous motors, we developed a lumped thermal system analysis model. Subsequently, heat transfer analysis has been performed based on acquired energy loss, temperature data and thermal resistance with three types of SPM. It is shown that the torque constants decrease by Max. 10% as speed increase. At the rated torque, the core loss is Max. 10.9 times greater than the coil loss and the hysteresis loss of magnets is dominant in total loss.

A Novel Position Sensorless Speed Control Scheme for Permanent Magnet Synchronous Motor Drives (영구자석 동기전동기의 센서리스 속도제어 시스템)

  • Won, Tae-Hyun;Park, Han-Woong;Song, Dall-Sup;Kim, Moon-Soo;Lee, Man-Hyung
    • Proceedings of the Korean Institute of Electrical and Electronic Material Engineers Conference
    • /
    • 2002.05a
    • /
    • pp.112-116
    • /
    • 2002
  • A sensorless control strategy for permanent magnet synchronous motors is presented in this paper. A speed control scheme based on the measurement and observation of stator current, voltage. and flux vector is proposed. Two phase voltages and two stator currents are measured and processed in discrete form in DSP. The rotor position and speed are estimated through the stator flux and its derivative estimation. Flux and its derivative are calculated in the stationary reference frame and used to estimate the speed and position. The rotor position angle is then used in a microcontroller to produce the appropriate stator current command signals for the hysteresis current controller of the inverter. The closed-loop speed control has been shown to be effective from standstill to rated speed. Moreover, a flux drift problem caused by the integration can be eliminated so that a stable sensorless starting and running operation can be achieved. Computer simulation and experimental results are presented to demonstrate the effectiveness of the proposed scheme.

  • PDF

Research for Optimal Operation of Switched Reluctance Motors (스위치드 릴럭턴스 전동기 최적운전을 위한 연구)

  • Sungin Jeong
    • The Journal of the Institute of Internet, Broadcasting and Communication
    • /
    • v.23 no.4
    • /
    • pp.143-148
    • /
    • 2023
  • Among the characteristics of SRM, due to nonlinearity, it is difficult to properly operate to form maximum torque and minimum torque pulsation. In addition, in the case of fixed switching angle control, torque formation according to speed variation is unstable, thereby reducing efficiency. Therefore, active switching angle control according to speed variation is required. Therefore, active switching angle control according to speed variation is required. In this paper, a method for improving driving performance by reducing torque ripple by automatic control of the advance angle and increasing output torque was sought from the problem caused by the nonlinearity of the SRM. In addition, the optimal operation of SRM due to the switching variable according to the performance of the hysteretic current controller was examined.

Experimental Investigation on Torsional Analysis and Fracture of Tripod Shaft for High-speed Train (고속열차용 트리포드 축의 비틀림 해석 및 파단에 대한 실험적 연구)

  • Lee, Joo Hong;Kim, Do Sik;Nam, Tae Yeon;Lee, Tae Young;Cho, Hae Yong
    • Transactions of the Korean Society of Mechanical Engineers A
    • /
    • v.40 no.11
    • /
    • pp.979-986
    • /
    • 2016
  • The tripod shafts of constant-velocity joint are used in both the trains KTX and KTX-sanchon. It is an important component that connects the motor reduction unit and the axle reduction unit in a power bogie. The tripod shaft not only transmits drive and brake torque in the rotational direction, but also slides in the axial direction. If the drive system is loaded with an excessive torque, the fuse part of the shaft will be fractured firstly to protect the other important components. In this study, a rig was developed for conducting torsion tests on the tripod shaft, which is a type of mechanical fuse. The tripod shafts were subjected to torsional fracture test and torsional fatigue test on the rig. The weak zone of the tripod shaft was identified, and its fatigue life was predicted using finite element analysis (FEA). After analyzing the FEA results, design solutions were proposed to improve the strength and fatigue life of the tripod shaft. Furthermore, the deterioration trend and time for failure of the tripod shaft were verified using the hysteresis loops which had been changed with the advancement of the torsional fatigue test.

Problems of Stator Flux Estimation in DTC of PMSM Drives

  • Kadjoudj, M.;Golea, N.;Benbouzid, M.E.H
    • Journal of Electrical Engineering and Technology
    • /
    • v.2 no.4
    • /
    • pp.468-477
    • /
    • 2007
  • The DTC of voltage source inverter-fed PMSMs is based on hysteresis controllers of torque and flux. It has several advantages, namely, elimination of the mandatory rotor position sensor, less computation time, and rapid torque response. In addition, the stator resistance is the only parameter, which should be known, and no reference frame transformation is required. The DTC theory has achieved great success in the control of induction motors. However, for the control of PMSM drives proposed a few years ago, there are many basic theoretical problems that must be clarified. This paper describes an investigation into the effect of the zero voltage space vectors in the DTC system and points out that if using it rationally, not only can the DTC of the PMSM drive be driven successfully, but torque and flux ripples are reduced and overall performance of the system is improved. The implementation of DTC in PMSM drives is described and the switching tables specific for an interior PMSM are derived. The conventional eight voltage-vector switching table, which is namely used in the DTC of induction motors does not seem to regulate the torque and stator flux in a PMSM well when the motor operates at low speed. Modelling and simulation studies have both revealed that a six voltage-vector switching table is more appropriate for PMSM drives at low speed. In addition, the sources of difficulties, namely, the error in the detection of the initial rotor position, the variation of stator resistance, and the offsets in measurements are analysed and discussed.

Optimal Design of Interior Permanent Magnet Synchronous Machines Consideration of Magnet BH Characteristic with Different Rotor Type using Response Surface Methodology (반응표면분석법을 이용한 영구자석의 형상 및 특성에 따른 매입형 영구자석 동기기의 최적 설계)

  • Im, Young-Hun;Jang, Seok-Myoung
    • The Transactions of The Korean Institute of Electrical Engineers
    • /
    • v.62 no.8
    • /
    • pp.1080-1089
    • /
    • 2013
  • Interior Permanent Magnet Synchronous Machines (IPMSMs) with rare earth magnet are widely used in electric vehicles and hybrid electric vehicles. IPMSMs having high efficiency, high torque, and a wide speed range are employed in propulsion system. And the rotor in an IPMSM is generally made of a rare earth magnet to achieve a large energy product and high torque. This paper discusses issues regarding design and performance of IPMSMs using different factors of BH magnetic characteristic. It is necessary to choose factors of magnetic material according to permanent magnet shape in rotor for high performance. Response Surface Methodology (RSM) is selected to obtain factors of magnetic material according to variety of rotor shapes. The RSM is a collection of mathematical and statistical techniques useful for the analysis of problems in which a response of interest in influenced by several variables and the objective is to optimize response. Therefore, it is necessary to analyze the torque characteristics of an IPMSM having magnet BH hysteresis curve with different rotor shape. Factors of residual flux density (Br) factor and intrinsic coercive force (Hc) are important parameters in RSM for rotor shape. The rotor shapes for IPMSMs having magnet BH characteristic were investigated using the RSM, and three shapes were analyzed in detail using FEA. The results lead to design consequence of IPMSMs in the various rare earth magnet materials.

Prediction of Thermal Fatigue Life of Engine Exhaust Manifold under Thermo-mechanical Cyclic Loading (열적-기계적 반복하중을 받고 있는 엔진 배기매니폴드의 열피로 수명예측)

  • Choi, Bok-Lok;Chang, Hoon
    • Transactions of the Korean Society of Mechanical Engineers A
    • /
    • v.34 no.7
    • /
    • pp.911-917
    • /
    • 2010
  • In this study, we performed structural and fatigue analyses of the engine exhaust manifold that was subjected to thermo-mechanical cyclic loading. The methodologies used in this study are based on an approach in which the techniques for modeling the exhaust system, the temperature-dependent properties of the material, and thermal cyclic loading are taken into consideration and a reliable strategy is adopted for failure prediction. An application example shows that at an elevated temperature, considerable compressive plastic deformation is observed and that at a low temperature, tensile stresses remain in those parts of the test exhaust manifold where failure is observed. In order to predict fatigue life, mechanical damage is determined on the basis of the stress.strain hysteresis loops by using the classical Coffin.Manson equation and by adopting a method in which the dissipated plastic energy is taken into consideration.