• 제목/요약/키워드: Hypoxia-inducible factor-1(HIF-1)

검색결과 137건 처리시간 0.026초

Effects of hypoxia inducible factors-$1{\alpha}$ on autophagy and invasion of trophoblasts

  • Choi, Jong-Ho;Lee, Hyun-Jung;Yang, Tae-Hyun;Kim, Gi Jin
    • Clinical and Experimental Reproductive Medicine
    • /
    • 제39권2호
    • /
    • pp.73-80
    • /
    • 2012
  • Objective: This study was undertaken to determine the effect of hypoxia inducible factor (HIF)-$1{\alpha}$ on the cell death, autophagy, and invasion of trophoblasts. Methods: To understand the effect of HIF-$1{\alpha}$, we inhibited HIF-$1{\alpha}$ using siRNA under normoxia and hypoxia conditions. Invasion assay and zymography were performed to determine changes in the invasion ability of HIF-$1{\alpha}$. Western blotting and immunofluorescence were performed to determine some of the signal events involved in apoptosis and autophagy. Results: There was no difference in cell death through the inhibition of HIF-$1{\alpha}$ expression by siRNA; however, the expression of LC3 and autophagosome formation increased. On the other hand, autophagy was increased, and the invasive ability of trophoblast cells decreased according to the inhibition of HIF-$1{\alpha}$ expression by siRNA. These experimental results mean that HIF-$1{\alpha}$ genes regulate the invasive ability of trophoblasts by increasing autophagy. Conclusion: This study contributes important data for understanding the mechanism of early pregnancy implantation and the invasive ability of trophoblasts by defining the relationship between the roles of HIF-$1{\alpha}$ and autophagy.

Serum Tumor Markers, Hypoxia-Inducible factor-1α HIF-1α and Vascular Endothelial Growth Factor, in Patients with Non-small Cell Lung Cancer Before and after Intervention

  • Liang, Jun;Qian, Ying;Xu, Dan;Yin, Qun;Pan, Hui-Juan
    • Asian Pacific Journal of Cancer Prevention
    • /
    • 제14권6호
    • /
    • pp.3851-3854
    • /
    • 2013
  • Objective: To explore changes in the serum tumor makers, hypoxia-inducible factor-$1{\alpha}$ (HIF-$1{\alpha}$) and vascular endothelial growth factor (VEGF) level and their relations in patients with non-small cell lung cancer (NSCLC) before and after intervention. Materials and Methods: Forty patients with NSCLC and 40 healthy individuals undergoing physical examination in our hospital provided the observation and control groups. HIF-$1{\alpha}$ and VEGF levels in serum were detected by enzyme-linked immuno-sorbent assay (ELISA) in the observation group before and after intervention and in control group on the day of physical examination, along with serum carcino-embryonic antigen (CEA), neuron-speci ic enolase (NSE) and squamous cell carcinoma antigen (SCC) levels in the observation group with a fully automatic biochemical analyzer. Clinical effects and improvement of life quality in the observation group were also evaluated. Results: The total effective rate and improvement of life quality after treatment in observation group were 30.0% and 32.5%, respectively. Serum HIF-$1{\alpha}$ and VEGF levels in the control group were lower than that in observation group (p<0.01), but remarkably elevatedafter intervention (p<0.01). In addition, serum CEA, NSE and SCC levels were apparently lowered by treatment (p<0.01). Serum HIF-$1{\alpha}$ demonstrated a positive relation with VEGF level (p<0.01) and was inversely related with CEA, NSE and SCC levels (p<0.01). Conclusions: Significant correlations exist between marked increase of serum HIF-$1{\alpha}$ and VEGF levels and decrease of indexes related to hematological tumor markers in NSCLC patients after intervention.

Anti-Tumor Effect of IDF-11774, an Inhibitor of Hypoxia-Inducible Factor-1, on Melanoma

  • Kim, Nan-Hyung;Jeong, Jong Heon;Park, Yu Jeong;Shin, Hui Young;Choi, Woo Kyoung;Lee, Kyeong;Lee, Ai-Young
    • Biomolecules & Therapeutics
    • /
    • 제30권5호
    • /
    • pp.465-472
    • /
    • 2022
  • Melanoma is one of the most aggressive skin cancers. Hypoxia contributes to the aggressiveness of melanoma by promoting cancer growth and metastasis. Upregulation of cyclin D1 can promote uncontrolled cell proliferation in melanoma, whereas stimulation of cytotoxic T cell activity can inhibit it. Epithelial mesenchymal transition (EMT) plays a critical role in melanoma metastasis. Hypoxia-inducible factor-1α (HIF-1α) is a main transcriptional mediator that regulates many genes related to hypoxia. CoCl2 is one of the most commonly used hypoxia-mimetic chemicals in cell culture. In this study, inhibitory effects of IDF-11774, an inhibitor of HIF-1α, on melanoma growth and metastasis were examined using cultured B16F10 mouse melanoma cells and nude mice transplanted with B16F10 melanoma cells in the presence or absence of CoCl2-induced hypoxia. IDF-11774 reduced HIF-1α upregulation and cell survival, but increased cytotoxicity of cultured melanoma cells under CoCl2-induced hypoxia. IDF-11774 also reduced tumor size and local invasion of B16F10 melanoma in nude mice along with HIF-1α downregulation. Expression levels of cyclin D1 in melanoma were increased by CoCl2 but decreased by IDF-11774. Apoptosis of melanoma cells and infiltration of cytotoxic T cells were increased in melanoma after treatment with IDF-11774. EMT was stimulated by CoCl2, but restored by IDF11774. Overall, IDF-11774 inhibited the growth and metastasis of B16F10 melanoma via HIF-1α downregulation. The growth of B16F10 melanoma was inhibited by cyclin D1 downregulation and cytotoxic T cell stimulation. Metastasis of B16F10 melanoma was inhibited by EMT suppression.

CaMKII Inhibitor KN-62 Blunts Tumor Response to Hypoxia by Inhibiting HIF-$1{\alpha}$ in Hepatoma Cells

  • Lee, Kyoung-Hwa
    • The Korean Journal of Physiology and Pharmacology
    • /
    • 제14권5호
    • /
    • pp.331-336
    • /
    • 2010
  • In rapidly growing tumors, hypoxia commonly develops due to the imbalance between $O_2$ consumption and supply. Hypoxia Inducible Factor (HIF)-$1{\alpha}$ is a transcription factor responsible for tumor growth and angiogenesis in the hypoxic microenvironment; thus, its inhibition is regarded as a promising strategy for cancer therapy. Given that CamKII or PARP inhibitors are emerging anticancer agents, we investigated if they have the potential to be developed as new HIF-$1{\alpha}$-targeting drugs. When treating various cancer cells with the inhibitors, we found that a CamKII inhibitor, KN-62, effectively suppressed HIF-$1{\alpha}$ specifically in hepatoma cells. To examine the effect of KN-62 on HIF-$1{\alpha}$-driven gene expression, we analyzed the EPO-enhancer reporter activity and mRNA levels of HIF-$1{\alpha}$ downstream genes, such as EPO, LOX and CA9. Both the reporter activity and the mRNA expression were repressed by KN-62. We also found that KN-62 suppressed HIF-$1{\alpha}$ by impairing synthesis of HIF-$1{\alpha}$ protein. Based on these results, we propose that KN-62 is a candidate as a HIF-$1{\alpha}$-targeting anticancer agent.

Hypoxia-inducible factor: role in cell survival in superoxide dismutase overexpressing mice after neonatal hypoxia-ischemia

  • Jeon, Ga Won;Sheldon, R. Ann;Ferriero, Donna M.
    • Clinical and Experimental Pediatrics
    • /
    • 제62권12호
    • /
    • pp.444-449
    • /
    • 2019
  • Background: Sixty percent of infants with severe neonatal hypoxic-ischemic encephalopathy die, while most survivors have permanent disabilities. Treatment for neonatal hypoxic-ischemic encephalopathy is limited to therapeutic hypothermia, but it does not offer complete protection. Here, we investigated whether hypoxia-inducible factor (HIF) promotes cell survival and suggested neuroprotective strategies. Purpose: HIF-1α deficient mice have increased brain injury after neonatal hypoxia-ischemia (HI), and the role of HIF-2α in HI is not well characterized. Copper-zinc superoxide dismutase (SOD)1 overexpression is not beneficial in neonatal HI. The expression of HIF-1α and HIF-2α was measured in SOD1 overexpressing mice and compared to wild-type littermates to see if alteration in expression explains this lack of benefit. Methods: On postnatal day 9, C57Bl/6 mice were subjected to HI, and protein expression was measured by western blotting in the ipsilateral cortex of wild-type and SOD1 overexpressing mice to quantify HIF-1α and HIF-2α. Spectrin expression was also measured to characterize the mechanism of cell death. Results: HIF-1α protein expression did not significantly change after HI injury in the SOD1 overexpressing or wild-type mouse cortex. However, HIF-2α protein expression increased 30 minutes after HI injury in the wild-type and SOD1 overexpressing mouse cortex and decreased to baseline value at 24 hours after HI injury. Spectrin 145/150 expression did not significantly change after HI injury in the SOD1 overexpressing or wild-type mouse cortex. However, spectrin 120 expression increased in both wild-type and SOD1 overexpressing mouse at 4 hours after HI, which decreased by 24 hours, indicating a greater role of apoptotic cell death. Conclusion: HIF-1α and HIF-2α may promote cell survival in neonatal HI in a cell-specific and regional fashion. Our findings suggest that early HIF-2α upregulation precedes apoptotic cell death and limits necrotic cell death. However, the influence of SOD was not clarified; it remains an intriguing factor in neonatal HI.

Hypoxic repression of CYP7A1 through a HIF-1α- and SHP-independent mechanism

  • Moon, Yunwon;Park, Bongju;Park, Hyunsung
    • BMB Reports
    • /
    • 제49권3호
    • /
    • pp.173-178
    • /
    • 2016
  • Liver cells experience hypoxic stress when drug-metabolizing enzymes excessively consume O2 for hydroxylation. Hypoxic stress changes the transcription of several genes by activating a heterodimeric transcription factor called hypoxia-inducible factor-1α/β (HIF-1α/β). We found that hypoxic stress (0.1% O2) decreased the expression of cytochrome P450 7A1 (CYP7A1), a rate-limiting enzyme involved in bile acid biosynthesis. Chenodeoxycholic acid (CDCA), a major component of bile acids, represses CYP7A1 by activating a transcriptional repressor named small heterodimer partner (SHP). We observed that hypoxia decreased the levels of both CDCA and SHP, suggesting that hypoxia repressed CYP7A1 without inducing SHP. The finding that overexpression of HIF-1α increased the activity of the CYP7A1 promoter suggested that hypoxia decreased the expression of CYP7A1 in a HIF-1-independent manner. Thus, the results of this study suggested that hypoxia decreased the activity of CYP7A1 by limiting its substrate O2, and by decreasing the transcription of CYP7A1.

Hypoxia Mediates Runt-Related Transcription Factor 2 Expression via Induction of Vascular Endothelial Growth Factor in Periodontal Ligament Stem Cells

  • Xu, Qian;Liu, Zhihua;Guo, Ling;Liu, Rui;Li, Rulei;Chu, Xiang;Yang, Jiajia;Luo, Jia;Chen, Faming;Deng, Manjing
    • Molecules and Cells
    • /
    • 제42권11호
    • /
    • pp.763-772
    • /
    • 2019
  • Periodontitis is characterized by the loss of periodontal tissues, especially alveolar bone. Common therapies cannot satisfactorily recover lost alveolar bone. Periodontal ligament stem cells (PDLSCs) possess the capacity of self-renewal and multilineage differentiation and are likely to recover lost alveolar bone. In addition, periodontitis is accompanied by hypoxia, and hypoxia-inducible $factor-1{\alpha}$ ($HIF-1{\alpha}$) is a master transcription factor in the response to hypoxia. Thus, we aimed to ascertain how hypoxia affects runt-related transcription factor 2 (RUNX2), a key osteogenic marker, in the osteogenesis of PDLSCs. In this study, we found that hypoxia enhanced the protein expression of $HIF-1{\alpha}$, vascular endothelial growth factor (VEGF), and RUNX2 ex vivo and in situ. VEGF is a target gene of $HIF-1{\alpha}$, and the increased expression of VEGF and RUNX2 proteins was enhanced by cobalt chloride ($CoCl_2$, $100{\mu}mol/L$), an agonist of $HIF-1{\alpha}$, and suppressed by 3-(5'-hydroxymethyl-2'-furyl)-1-benzyl indazole (YC-1, $10{\mu}mol/L$), an antagonist of $HIF-1{\alpha}$. In addition, VEGF could regulate the expression of RUNX2, as RUNX2 expression was enhanced by human VEGF ($hVEGF_{165}$) and suppressed by VEGF siRNA. In addition, knocking down VEGF could decrease the expression of osteogenesis-related genes, i.e., RUNX2, alkaline phosphatase (ALP), and type I collagen (COL1), and hypoxia could enhance the expression of ALP, COL1, and osteocalcin (OCN) in the early stage of osteogenesis of PDLSCs. Taken together, our results showed that hypoxia could mediate the expression of RUNX2 in PDLSCs via $HIF-1{\alpha}$-induced VEGF and play a positive role in the early stage of osteogenesis of PDLSCs.

Long Noncoding RNA Expression Profiling Reveals Upregulation of Uroplakin 1A and Uroplakin 1A Antisense RNA 1 under Hypoxic Conditions in Lung Cancer Cells

  • Byun, Yuree;Choi, Young-Chul;Jeong, Yongsu;Yoon, Jaeseung;Baek, Kwanghee
    • Molecules and Cells
    • /
    • 제43권12호
    • /
    • pp.975-988
    • /
    • 2020
  • Hypoxia plays important roles in cancer progression by inducing angiogenesis, metastasis, and drug resistance. However, the effects of hypoxia on long noncoding RNA (lncRNA) expression have not been clarified. Herein, we evaluated alterations in lncRNA expression in lung cancer cells under hypoxic conditions using lncRNA microarray analyses. Among 40,173 lncRNAs, 211 and 113 lncRNAs were up- and downregulated, respectively, in both A549 and NCI-H460 cells. Uroplakin 1A (UPK1A) and UPK1A-antisense RNA 1 (AS1), which showed the highest upregulation under hypoxic conditions, were selected to investigate the effects of UPK1A-AS1 on the expression of UPK1A and the mechanisms of hypoxia-inducible expression. Following transfection of cells with small interfering RNA (siRNA) targeting hypoxia-inducible factor 1α (HIF-1α), the hypoxia-induced expression of UPK1A and UPK1A-AS1 was significantly reduced, indicating that HIF-1α played important roles in the hypoxia-induced expression of these targets. After transfection of cells with UPK1A siRNA, UPK1A and UPK1A-AS1 levels were reduced. Moreover, transfection of cells with UPK1A-AS1 siRNA downregulated both UPK1A-AS1 and UPK1A. RNase protection assays demonstrated that UPK1A and UPK1A-AS1 formed a duplex; thus, transfection with UPK1A-AS1 siRNA decreased the RNA stability of UPK1A. Overall, these results indicated that UPK1A and UPK1A-AS1 expression increased under hypoxic conditions in a HIF-1α-dependent manner and that formation of a UPK1A/UPK1A-AS1 duplex affected RNA stability, enabling each molecule to regulate the expression of the other.

비소세포 폐암에서 HIF-$1{\alpha}$의 발현: 예후 및 종양표지자와의 관련성 (Expression of Hypoxia-inducible Factor-$1{\alpha}$ in Non-small Cell Lung Cancer: Relationship to Prognosis and Tumor Biomarkers)

  • 조성래;변정훈;김종인;이봉근;천봉권
    • Journal of Chest Surgery
    • /
    • 제39권11호
    • /
    • pp.828-837
    • /
    • 2006
  • 배경: 악성종양에서 신생혈관 생성 및 당분해의 증가는 저산소 상태의 미세환경을 나타내며, 이는 종양의 침습성, 전이 및 환자의 예후와 관련이 있는 것으로 알려져 있다. Hypoxia-inducible factor 1(HIF-1)는 당원 수송체, 당분해 효소, 혈관내피세포 성장인자 등의 유전자의 전사를 활성화한다고 알려져 있다. 그리고 HIF-1의 전사 활성도는 HIF-$1{\alpha}$ 아단위의 표현이 조절되는 정도에 의존한다. 비소세포 폐암에서 HIF-$1{\alpha}$의 발현이 혈관 생성능, 종양세포 증식능 및 이상형 p53의 축적 등 종양의 생물학적 특성에 미치는 영향과 환자의 수술 후 예후와의 관계를 규명하고자 한다. 대상 및 방법: 1997년부터 1999년까지 비소세포 폐암으로 진단받고 전폐절제술 혹은 폐엽절제술을 시행 받은 59명의 폐암 환자들에서 얻어진 파라핀 조직 블록을 대상으로 하였다. ABC(avidin-biotin complex) 방법에 기초한 면역조직화학검사를 이용하여 암조직과 정상조직에서 HIF-$1{\alpha}$, VEGF(vascular endothelial growth factor), p53 단백의 발현을 조사하고, Ki-67의 발현을 이용한 증식지수를 측정하였다. HIF-$1{\alpha}$ 발현과 환자의 생존기간을 포함한 임상적-병리학적 변수들과의 상관관계, VEGF, p53의 발현과 증식지수와의 상관관계를 분석하였다. 결과: HIF-$1{\alpha}$의 과발현은 40.7%(24예/59예)였다. HIF-$1{\alpha}$의 과발현은 병리학적 TNM병기(p=0.004), T병기(p=0.020), N병기(p=0.004), 림프관/혈관 침범(p=0.019) 등과 관련이 있었다. 또 혈관내피세포 성장인자의 발현(p<0.001) 및 이상형의 p53의 발현(p=0.040)과 관련성이 있었다. Kaplan-Meier 생존분석에서 HIF-$1{\alpha}$의 과발현이 있는 환자의 5년 생존울은 22%로 HIF-$1{\alpha}$의 저발현 환자의 5년 생존율 61%에 비해 불량한 생존율을 보였고, 단변량분석과 다변량분석에서 HIF-$1{\alpha}$의 발현은 불량한 예후를 나타내는 인자로 관찰되었다. 결론: 이상의 결과로 비소세포 폐암 환자에서 HIF-$1{\alpha}$의 과발현은 종양내 신생혈관의 생성과 림프절 전이와 관련이 있는 표지자로 여겨지며, 수술 후 불량한 예후를 나타내었다.