• Title/Summary/Keyword: Hypothetical protein

Search Result 89, Processing Time 0.031 seconds

Structure-based Identification of a Novel NTPase from Methanococcus jannaschii

  • Hwang, Kwang-Yeon;Chung, Ji-Hyung;Kim, Sung-Hou;Han, Ye-Sun;Yunje Cho
    • Proceedings of the Korean Biophysical Society Conference
    • /
    • 1999.06a
    • /
    • pp.17-17
    • /
    • 1999
  • Almost half of the entire set of predicted genomic products from M ethanococcus jannaschii are classified as functionally unknown hypothetical proteins. We present a structure-based identification of the biochemical function of a protein with hitherto-unknown function from a M. jannaschii gene, Mj0226.(omitted)

  • PDF

Hypothetical Mechanisms of G protein-coupled neurodegeneration in glutamate excitotoxicity in human SH-SY5Y neuroblastoma cells

  • Nikolova, Nikolova Sevdalina;Jin, Da-Qing;Kim, Jung-Ae
    • Proceedings of the PSK Conference
    • /
    • 2003.10b
    • /
    • pp.123.2-123.2
    • /
    • 2003
  • The cellular mechanisms by which excess exposure to the excitatory neurotransmitter glutamate can produce neuronal injury are unknown. In this study, we found that glutamate induced cell death at IC (50) of 100 microM on the cultured human SH-SY5Y neuroblastoma cells. It has been hypothesized that glutamate excitotoxicity is related with the elevation of calcium (Ca) levels. To determine the dependence of glutamate neurotoxicity on Ca environment, extracellular (EDTA) and intracellular (BAPTA/AM) chelator were used. (omitted)

  • PDF

Effects of Sound Stress on Physiological Processes of the American Leafminer, Liriomyza trifolii, and Proteomic Analysis (스트레스 음파 처리에 따른 아메리카잎굴파리(Liriomyza trifolii)의 생리 변화와 프로테오믹 분석)

  • Park, Jung-A;Surakasi, Venkara Prasad;Kim, Yong-Gun
    • Korean journal of applied entomology
    • /
    • v.50 no.2
    • /
    • pp.131-139
    • /
    • 2011
  • This study investigated the adverse effects of sound treatment on physiological processes of the American leafminer, Liriomyza trifolii, during several developmental stages. Larval feeding activity was analyzed by measuring feeding tunnel length. It was significantly suppressed by sound treatment (5,000 Hz, 95 dB). Sound treatment delayed the pupal period at 315 - 5,000 Hz and prevented adult emergence at 1,000 - 5,000 Hz. Female oviposition was also inhibited by the stress sound treatments. However, phototactic adult movement was not affected by sound treatment. Pupae treated with 5,000 Hz showed marked changes in protein patterns analyzed by two dimensional electrophoresis. MALDI-TOF analysis of specific protein spots indicated that trafficking protein particle complex I, triosephosphate isomerase, hypothetical protein TcasGA2_TC013388, polycystin-2, paraneoplastic neuronal antigen MA1, and tropomyosin I (isoform M) were predicted in the control insects and disappeared in the insects treated with sound. By contrast, DOCK9, cytoskeletal keratin II, and F0F1-ATP synthase beta subunit were predicted only in the sound-treated insects. Furthermore, stress sound significantly increased the susceptibility of L. trifolii to insecticides. These results suggest that physiological processes of L. trifolii are altered by sound stress, which may be exploited to develop a novel physical control tactic against L. trifolii.

Sequence Analysis of Hypothetical Proteins from Helicobacter pylori 26695 to Identify Potential Virulence Factors

  • Naqvi, Ahmad Abu Turab;Anjum, Farah;Khan, Faez Iqbal;Islam, Asimul;Ahmad, Faizan;Hassan, Md. Imtaiyaz
    • Genomics & Informatics
    • /
    • v.14 no.3
    • /
    • pp.125-135
    • /
    • 2016
  • Helicobacter pylori is a Gram-negative bacteria that is responsible for gastritis in human. Its spiral flagellated body helps in locomotion and colonization in the host environment. It is capable of living in the highly acidic environment of the stomach with the help of acid adaptive genes. The genome of H. pylori 26695 strain contains 1,555 coding genes that encode 1,445 proteins. Out of these, 340 proteins are characterized as hypothetical proteins (HP). This study involves extensive analysis of the HPs using an established pipeline which comprises various bioinformatics tools and databases to find out probable functions of the HPs and identification of virulence factors. After extensive analysis of all the 340 HPs, we found that 104 HPs are showing characteristic similarities with the proteins with known functions. Thus, on the basis of such similarities, we assigned probable functions to 104 HPs with high confidence and precision. All the predicted HPs contain representative members of diverse functional classes of proteins such as enzymes, transporters, binding proteins, regulatory proteins, proteins involved in cellular processes and other proteins with miscellaneous functions. Therefore, we classified 104 HPs into aforementioned functional groups. During the virulence factors analysis of the HPs, we found 11 HPs are showing significant virulence. The identification of virulence proteins with the help their predicted functions may pave the way for drug target estimation and development of effective drug to counter the activity of that protein.

Functional Prediction of Hypothetical Proteins from Shigella flexneri and Validation of the Predicted Models by Using ROC Curve Analysis

  • Gazi, Md. Amran;Mahmud, Sultan;Fahim, Shah Mohammad;Kibria, Mohammad Golam;Palit, Parag;Islam, Md. Rezaul;Rashid, Humaira;Das, Subhasish;Mahfuz, Mustafa;Ahmeed, Tahmeed
    • Genomics & Informatics
    • /
    • v.16 no.4
    • /
    • pp.26.1-26.12
    • /
    • 2018
  • Shigella spp. constitutes some of the key pathogens responsible for the global burden of diarrhoeal disease. With over 164 million reported cases per annum, shigellosis accounts for 1.1 million deaths each year. Majority of these cases occur among the children of the developing nations and the emergence of multi-drug resistance Shigella strains in clinical isolates demands the development of better/new drugs against this pathogen. The genome of Shigella flexneri was extensively analyzed and found 4,362 proteins among which the functions of 674 proteins, termed as hypothetical proteins (HPs) had not been previously elucidated. Amino acid sequences of all these 674 HPs were studied and the functions of a total of 39 HPs have been assigned with high level of confidence. Here we have utilized a combination of the latest versions of databases to assign the precise function of HPs for which no experimental information is available. These HPs were found to belong to various classes of proteins such as enzymes, binding proteins, signal transducers, lipoprotein, transporters, virulence and other proteins. Evaluation of the performance of the various computational tools conducted using receiver operating characteristic curve analysis and a resoundingly high average accuracy of 93.6% were obtained. Our comprehensive analysis will help to gain greater understanding for the development of many novel potential therapeutic interventions to defeat Shigella infection.

HP0902 from Helicobacter pylori is a thermostable, dimeric protein belonging to an all-β topology of the cupin superfamily

  • Sim, Dae-Won;Lee, Yoo-Sup;Kim, Ji-Hun;Seo, Min-Duk;Lee, Bong-Jin;Won, Hyung-Sik
    • BMB Reports
    • /
    • v.42 no.6
    • /
    • pp.387-392
    • /
    • 2009
  • Here, we report the first biochemical and structural characterization of the hypothetical protein HP0902 from Helicobacter pylori, in terms of structural genomics. Gel-permeation chromatography and dynamic light scattering indicated that the protein behaves as a dimer in solution. Circular dichroism spectroscopy showed that HP0902 primarily adopts a $\beta$-structure and the protein was highly thermostable with a denaturing temperature higher than $70^{\circ}C$. Finally, the backbone NMR assignments were obtained on the [$^{13}C,^{15}N$]HP0902 and the secondary structure was determined using the chemical shift data. Additionally, the local flexibility was assessed via a heteronuclear $^1H-^{15}N$ steady state NOE experiment. The results revealed that HP0902 would adopt a compactly folded, all-$\beta$ topology with 11 $\beta$-strands. All of the results clearly support the notion that HP0902 belongs to the cupin superfamily of proteins.

Identification of a Novel Microtubule-Binding Protein in Giardia lamblia

  • Kim, Juri;Park, Soon-Jung
    • Parasites, Hosts and Diseases
    • /
    • v.54 no.4
    • /
    • pp.461-469
    • /
    • 2016
  • Giardia lamblia is a protozoan that causes diarrheal diseases in humans. Cytoskeletal structures of Giardia trophozoites must be finely reorganized during cell division. To identify Giardia proteins which interact with microtubules (MTs), Giardia lysates were incubated with in vitro-polymerized MTs and then precipitated by ultracentifugation. A hypothetical protein (GL50803_8405) was identified in the precipitated fraction with polymerized MTs and was named GlMBP1 (G. lamblia microtubule-binding protein 1). Interaction of GlMBP1 with MTs was confirmed by MT binding assays using recombinant GlMBP1 (rGlMBP1). In vivo expression of GlMBP1 was shown by a real-time PCR and western blot analysis using anti-rGlMBP1 antibodies. Transgenic G. lamblia trophozoites were constructed by integrating a chimeric gene encoding hemagglutinin (HA)-tagged GlMBP1 into a Giardia chromosome. Immunofluorescence assays of this transgenic G. lamblia, using anti-HA antibodies, revealed that GlMBP1 mainly localized at the basal bodies, axonemes, and median bodies of G. lamblia trophozoites. This result indicates that GlMBP1 is a component of the G. lamblia cytoskeleton.

Biochemical and NMR Characterization of MTH1880 Mutant Proteins for Folding-Unfolding Studies

  • Kim, Hee-Youn;Ryu, Soo-Young;Yun, Ji-Hye;Kim, Suhk-Mann;Chang, Ik-Soo;Lee, Weon-Tae
    • Bulletin of the Korean Chemical Society
    • /
    • v.31 no.12
    • /
    • pp.3521-3524
    • /
    • 2010
  • MTH1880 is a hypothetical protein derived from Methanobacterium thermoautotrophicum, thermophilic methanogen. The solution structure determined by NMR spectroscopy showed that it has a novel $\alpha+\beta$-fold with a highly acidic ligand binding pocket. Since MTH1880 maintains its ultra-stable structural characteristics at both high temperature and pressure, it has been considered as an excellent model for studying protein folding. To initiate the structural and folding study of MTH1880 in proving its unusual stability, we performed the site directed mutagenesis and biochemical analysis of MTH1880 mutants. Data from circular dichroism and NMR spectroscopy suggest that the point mutations perturbed the structural stability of protein even though the secondary structure is retained. This study will provide the useful information in understanding the role of participating residues during folding-unfolding process and our result will be used in designing further folding experiments for hyper-thermopile proteins like MTH1880.

Identification of a Gene Involved in the Negative Regulation of Pyomelanin Production in Ralstonia solanacearum

  • Ahmad, Shabir;Lee, Seung Yeup;Khan, Raees;Kong, Hyun Gi;Son, Geun Ju;Roy, Nazish;Choi, Kihyuck;Lee, Seon-Woo
    • Journal of Microbiology and Biotechnology
    • /
    • v.27 no.9
    • /
    • pp.1692-1700
    • /
    • 2017
  • Ralstonia solanacearum causes bacterial wilt in a wide variety of host plant species and produces a melanin-like blackish-brown pigment in stationary phase when grown in minimal medium supplemented with tyrosine. To study melanin production regulation in R. solanacearum, five mutants exhibiting overproduction of melanin-like pigments were selected from a transposon (Tn) insertion mutant library of R. solanacearum SL341. Most of the mutants, except one (SL341T), were not complemented by the original gene or overproduced melanins. SL341T showed Tn insertion in a gene containing a conserved domain of eukaryotic transcription factor. The gene was annotated as a hypothetical protein, given its weak similarity to any known proteins. Upon complementation with its original gene, the mutant strains reverted to their wild-type phenotype. SL341T produced 3-folds more melanin at 72 h post-incubation compared with wild-type SL341 when grown in minimal medium supplemented with tyrosine. The chemical analysis of SL341T cultural filtrate revealed the accumulation of a higher amount of homogentisate, a major precursor of pyomelanin, and a lower amount of dihydroxyphenylalanine, an intermediate of eumelanin, compared with SL341. The expression study showed a relatively higher expression of hppD (encoding hydroxyphenylpyruvate dioxygenase) and lower expression of hmgA (encoding homogentisate dioxygenase) and nagL (encoding maleylacetoacetate isomerase) in SL341T than in SL341. SL341 showed a significantly higher expression of tyrosinase gene compared with SL341T at 48 h post-incubation. These results indicated that R. solanacearum produced both pyomelanin and eumelanin, and the novel hypothetical protein is involved in the negative regulation of melanin production.

Two-Dimensional Electrophoresis Analysis of Proteins between Bacillus licheniformis DM3 and Its Antifungal Activity Deficient Mutant (이차원전기영동법을 이용한 길항세균 Bacillus licheniformis DM3와 이의 항진균 활성 결여 돌연변이균주간 단백질 비교 분석)

  • Lee, Young-Keun;Kim, Jae-Sung;Chung, Hye-Young;Jang, Yu-Sin;Jang, Byung-Il
    • Korean Journal of Environmental Agriculture
    • /
    • v.22 no.3
    • /
    • pp.203-209
    • /
    • 2003
  • In the course of screening for antifungal agents, a bacterial strain, DM3 was isolated from a mud sample collected at Daechon in Chungnam province and identified as Bacillus licheniformis based on API 50CHB test. It has antifungal activity against 12 plant pathogenic fungi in paper disc assay. At the 95% lethal dose of gamma radiation ($^{60}Co$, 10 kGy, $D_{10}=2.32\;kGy$), the antifungal activity deficient mutant (mDM3) against Colletotrichum gloeosporioides was induced From 2-D electrophoresis analysis, serine hydroxymethyltransferase (45.0 kDa), hypothetical protein(40.7 kDa), NifU protein homolog(15.4 kDa), and resolvase(12.5 kDa) homologous proteins were detected only in B. licheniformis DM3. Lysozyme(18.1 kDa) and alkyl hydroperoxide reductase(15.6 kDa) homologous proteins were expressed uniquely in B. licheniformis mDM3. Further studies are needed to reveal that these proteins from B. licheniformis DM3 could be closely related to the antifungal activity against plant pathogenic fungi.