DOI QR코드

DOI QR Code

HP0902 from Helicobacter pylori is a thermostable, dimeric protein belonging to an all-β topology of the cupin superfamily

  • Sim, Dae-Won (Department of Biotechnology, College of Biomedical and Health Science, Konkuk University) ;
  • Lee, Yoo-Sup (Department of Biotechnology, College of Biomedical and Health Science, Konkuk University) ;
  • Kim, Ji-Hun (Reseearch Institute of Pharmaceutical Sciences, College of Pharmacy, Seoul National University) ;
  • Seo, Min-Duk (Reseearch Institute of Pharmaceutical Sciences, College of Pharmacy, Seoul National University) ;
  • Lee, Bong-Jin (Reseearch Institute of Pharmaceutical Sciences, College of Pharmacy, Seoul National University) ;
  • Won, Hyung-Sik (Department of Biotechnology, College of Biomedical and Health Science, Konkuk University)
  • Published : 2009.06.30

Abstract

Here, we report the first biochemical and structural characterization of the hypothetical protein HP0902 from Helicobacter pylori, in terms of structural genomics. Gel-permeation chromatography and dynamic light scattering indicated that the protein behaves as a dimer in solution. Circular dichroism spectroscopy showed that HP0902 primarily adopts a $\beta$-structure and the protein was highly thermostable with a denaturing temperature higher than $70^{\circ}C$. Finally, the backbone NMR assignments were obtained on the [$^{13}C,^{15}N$]HP0902 and the secondary structure was determined using the chemical shift data. Additionally, the local flexibility was assessed via a heteronuclear $^1H-^{15}N$ steady state NOE experiment. The results revealed that HP0902 would adopt a compactly folded, all-$\beta$ topology with 11 $\beta$-strands. All of the results clearly support the notion that HP0902 belongs to the cupin superfamily of proteins.

Keywords

References

  1. Grabowski, M., Joachimiak, A., Otwinowski, Z. and Minor, W. (2007) Structural genomics: keeping up with expanding knowledge of the protein universe. Curr. Opin. Struct. Biol. 17, 347-353 https://doi.org/10.1016/j.sbi.2007.06.003
  2. Rigden, D. J. (2006) Understanding the cell in terms of structure and function: insights from structural genomics. Curr. Opin. Biotechnol. 17, 457-464
  3. Blow, N. (2008) Structural genomics: inside a protein structure initiative center. Nat. Methods 5, 203-207 https://doi.org/10.1038/nmeth0208-203
  4. Marsden, R. L. and Orengo, C. A. (2008) Target selection for structural genomics: an overview. Methods Mol. Biol. 426, 3-25 https://doi.org/10.1007/978-1-60327-058-8_1
  5. Berman, H. M. and Westbrook, J. D. (2004) The impact of structural genomics on the protein data bank. Am. J. Pharmacogenomics 4, 247-252 https://doi.org/10.2165/00129785-200404040-00004
  6. Weight, J., McBroom-Cerajewski, L. D., Schapira, M., Zhao, Y. and Arrowmsmith, C. H. (2008) Structural genomics and drug discovery: all in the family. Curr. Opin. Chem. Biol. 12, 32-39 https://doi.org/10.1016/j.cbpa.2008.01.045
  7. Lundstrom, K. (2006) Structural genomics: the ultimate approach for rational drug design. Mol. Biotechnol. 34, 205-212 https://doi.org/10.1385/MB:34:2:205
  8. Baker, E. N. (2007) Structural genomics as an approach towards understanding the biology of tuberculosis. J. Struct. Funct. Genomics 8, 57-65 https://doi.org/10.1007/s10969-007-9020-9
  9. Fan, E., Baker, D., Fields, S., Gelb, M. H., Buckner, F. S., Van Voorhis, W. C., Phizicky, E., Dumont, M., Mehlin, C., Grayhack, E., Sullivan, M., Verlinde, C., Detitta, G., Meldrum, D. R., Merritt, E. A., Earnest, T., Soltis, M., Zucker, F., Myler, P. J., Schoenfeld, L., Kim, D., Worthey, L., Lacount, D., Vignali, M., Li, J., Mondal, S., Massey, A., Carroll, B., Gulde, S., Luft, J., Desoto, L., Holl, M., Caruthers, J., Bosch, J., Robien, M., Arakaki, T., Holmes, M., Le-Trong, I. and Hol, W. G. (2008) Structural genomics of pathogenic protozoa: an overview. Methods Mol. Biol. 426, 497-513鸀ᨈ鵛᠛呇䣊?⨀ༀ鼀婙?鬜呇棊?⨀Ḁꀀ婙?鬜呇裊?⨀ ꄀ婙?鬜呇꣊?⨀ᴀꈀ婙?鬜呇죊?⨀ ꌀ婙?鬜呇?⨀ ꐀ婙?鬜呇࣋?⨀ ꔀ婙?鬜呇⣋?⨀ ꘀ婙?鬜呇䣋?⨀ ꜀婙?鬜呇棋?⨀ ꠀ婙?鬜呇裋?⨀ ꤀婙?鬜呇꣋?⨀ ꨀ婙?鬜呇죋?⨀ ꬀婙?鬜呇?⨀ 가婙?鬜呇࣌?⨀ 관婙?鬜呇⣌?⨀ 글婙?鬜呇䣌?⨀ 넀婙?鬜呇棌?⨀ 눀婙?鬜呇裌?⨀ 대婙?鬜呇꣌?⨀ 됀婙?鬜呇죌?⨀ 딀婙?鬜呇?⨀ 렀婙?鬜呇࣍?⨀ 뤀婙?鬜呇⣍?⨀ 먀婙?鬜呇䣍?⨀ 저婙?鬜呇棍?⨀ 준婙?鬜呇裍?⨀ 쨀婙?鬜呇꣍?⨀ 쬀婙?鬜呇죍?⨀ 찀婙?鬜呇?⨀ 촀婙?鬜呇࣎?⨀ 츀冒ᐈ冑呇⣎?⨀਀케콝妚嶙呇䣎?⨀ 퀀娘?嫚呇棎?⨀ༀ턀ਈ孙᧝呇裎?⨀ᰀ툀톓ቈᄒ啇꣎?⨀ 팀?堙嬙啇죎?⨀ᤀ퐀ᥕᅈᤚ啇?⨀ https://doi.org/10.1007/978-1-60327-058-8_33
  10. Frishman, D. (2003) What we have learned about prokaryotes from structural genomics. OMICS 7, 211-224 https://doi.org/10.1089/153623103322246601
  11. Yee, A., Gutmanas, A. and Arrowsmith, C. H. (2006) Solution NMR in structural genomics. Curr. Opin. Struct. Biol. 5, 611-617
  12. Shin, J., Lee, W. and Lee, W. (2008) Structural proteomics by NMR spectroscopy. Expert Rev. Proteomics 5, 589-601 https://doi.org/10.1586/14789450.5.4.589
  13. Sue, S.-C., Chang, C.-F., Huang, Y.-T., Chou, C.-Y. and Huang, T.-H. (2005) Challenges in NMR-based structural genomics. Physica. A 350, 12-27 https://doi.org/10.1016/j.physa.2004.11.022
  14. Powers, R., Mercier, K. A. and Copeland, J. C. (2008) The application of FAST-NMR for the identification of novel drug discovery targets. Drug Discov. Today 13, 172-179 https://doi.org/10.1016/j.drudis.2007.11.001
  15. Wishart, D. (2005) NMR spectroscopy and protein structure determination: applications to drug discovery and development. Curr. Pharm. Biotechnol. 2, 105-120
  16. Homans, S. W. (2004) NMR spectroscopy tools for structure-aided drug design. Angew. Chem. Int. Ed. Engl. 43, 290-300 https://doi.org/10.1002/anie.200300581
  17. Pellecchia, M., Sem, D. S. and Wuthrich, K. (2002) NMR in drug discovery. Nat. Rev. Drug Discov. 3, 211-219
  18. Ferreira, A. C., Isomoto, H., Moriyama, M., Fujioka, T., Machado, J. C. and Yamaoka, Y. (2008) Helicobacter and gastric malignancies. Helicobacter 1, 28-34
  19. Bartnik, W. (2008) Clinical aspects of Helicobacter pylori infection. Pol. Arch. Med. Wewn. 118, 426-430
  20. Covacci, A., Telford, J. L., Del Giudice, G., Parsonnet, J. and Rappuoli, R. (1999) Helicobacter pylori virulence and genetic geography. Science 284, 1328-1333 https://doi.org/10.1126/science.284.5418.1328
  21. Tomb, J. F., White, O., Kerlavage, A. R., Clayton, R. A., Sutton, G. G., Fleischmann, R. D., Ketchum, K. A., Klenk, H. P., Gill, S., Dougherty, B. A., Nelson, K., Quackenbush, J., Zhou, L., Kirkness, E. F., Peterson, S., Loftus, B., Richardson, D., Dodson, R., Khalak, H. G., Glodek, A., McKenney, K., Fitzegerald, L. M., Lee, N., Adams, M. D., Hickey, E. K., Berg, D. E., Gocayne, J. D., Utterback, T. R., Peterson, J. D., Kelley, J. M., Cotton, M. D., Weidman, J. M., Fujii, C., Bowman, C., Watthey, L., Wallin, E., Hayes, W. S., Borodovsky, M., Karp, P. D., Smith, H. O., Fraser, C. M. and Venter, J. C. (1997) The complete genome sequence of the gastric pathogen Helicobacter pylori. Nature 388, 539-547 https://doi.org/10.1038/41483
  22. Alm, R. A., Ling, L. S., Moir, D. T., King, B. L., Brown, E. D., Doig, P. C., Smith, D. R., Noonan, B., Guild, B. C., deJonge, B. L., Carmel, G., Tummino, P. J., Caruso, A., Uria-Nickelsen, M., Mills, D. M., Ives, C., Gibson, R., Merberg, D., Mills, S. D., Jiang, Q., Taylor, D. E., Vovis, G. F. and Trust, T. J. (1999) Genomic-sequence comparison of two unrelated isolates of the human gastric pathogen Helicobacter pylori. Nature 397, 176-180 https://doi.org/10.1038/16495
  23. Oh, J. D., Kling-Backhed, H., Giannakis, M., Xu, J., Fulton, R. S., Fulton, L. A., Cordum, H. S., Wang, C., Elliott, G., Edwards, J., Mardis, E. R., Engstrand, L. G. and Gordon, J. I. (2006) The complete genome sequence of a chronic atrophic gastritis Helicobacter pylori strain: evolution during disease progression. Proc. Natl. Acad. Sci. U.S.A. 103, 9999-10004 https://doi.org/10.1073/pnas.0603784103
  24. Han, K.-D., Park S.-J., Jang, S.-B. and Lee, B.-J. (2008) Backbone 1H, 15N, and 13C resonance assignments and secondary-structure of the conserved hypothetical protein HP0892 of Helicobacter pylori. Mol. Cells 25, 138-141
  25. Seo, M.-D., Park, S.-J., Kim, H.-J., Seok, S.-H. and Lee, B.-J. (2007) Backbone 1H, 15N, and 13C resonance assignment and secondary structure prediction of HP0495 from Helicobacter pylori. J. Biochem. Mol. Biol. 40, 839-843 https://doi.org/10.5483/BMBRep.2007.40.5.839
  26. Tsai, J. Y., Chen, B. T., Cheng, H. C., Chen, H. Y., Hsaio, N. W., Lyu, P. C. and Sun, Y. J. (2006) Crystal structure of HP0242, a hypothetical protein from Helicobacter pylori with a novel fold. Proteins 4, 1138-1143
  27. Luthy, L., Grutter, M. G. and Mittl, P. R. (2002) The crystal structure of Helicobacter pylori cysteine-rich protein B reveals a novel fold for a penicillin-binding protein. J. Biol. Chem. 277, 10187-10193 https://doi.org/10.1074/jbc.M108993200
  28. Hung, C. L., Liu, J. H., Chiu, W. C., Huang, S. W., Hwang, J. K. and Wang, W. C. (2007) Crystal structure of Helicobacter pylori formamidase AmiF reveals a cysteine-glutamate-lysine catalytic triad. J. Biol. Chem. 16, 12220-122295
  29. Kim, N. Y., Weeks, D. L., Shin, J. M., David, R. S., Young, M. K. and Sachs, H. (2002) Proteins released by Helicobacter pylori in vitro. J. Bacteriol. 184, 6155-6162 https://doi.org/10.1128/JB.184.22.6155-6162.2002
  30. Nam, W. H., Lee, S. M., Kim, E. S., Kim, J. H. and Jeong, J. Y. (2007) Mechanism of metronidazole resistance regulated by the fdxA gene in Helicobacter pylori. J. Life Sci. 17, 723-727 https://doi.org/10.5352/JLS.2007.17.5.723
  31. Mukhopadhyay, A. K., Jeong, J. Y., Dailidiene, D., Hoffman, P. S. and Berg, D. E. (2003) The fdxA ferredoxin gene can down-regulate frxA nitroreductase gene expression and is essential in many strains of Helicobacter pylori. J. Bacteriol. 185, 2927-2935 https://doi.org/10.1128/JB.185.9.2927-2935.2003
  32. Dunwell, J. M., Purvis, A. and Khuri, S. (2004) Cupins: the most functionally diverse protein superfamily? Phytochemistry 65, 7-17 https://doi.org/10.1016/j.phytochem.2003.08.016
  33. Mills, E. N. C., Jenkins, J., Marigheto, N., Belton, P. S., Gunning, A. P. and Morris, V. J. (2002) Allergens of the cupin superfamily. Biochem. Soc. Trans. 30, 925-929 https://doi.org/10.1042/BST0300925
  34. Dunwell, J. M., Khuri, S. and Gane, P. J. (2000) Microbial relatives of the seed storage proteins of higher plants: conservation of structure and diversification of function during evolution of the cupin superfamily. Microbiol. Mol. Biol. Rev. 64, 153-179 https://doi.org/10.1128/MMBR.64.1.153-179.2000
  35. Lee, C.-J., Won, H.-S., Kim, J.-M., Lee, B.-J. and Kang, S.-O. (2007) Molecular domain organization of BldD, an essential transcriptional regulator for developmental process of Streptomyces coelicolor A3(2). Proteins 68, 344-352 https://doi.org/10.1002/prot.21338
  36. Won, H.-S., Seo, M.-D., Ko, H.- S., Choi, W.-S. and Lee, B.-J. (2008) Thermal denaturation of the apo-cyclic AMP receptor protein and noncovalent interactions between its domains. Mol. Cells 26, 61-66
  37. Lee, Y.-H., Won, H.-S., Lee, M.-H. and Lee, B.-J. (2002) Effects of salt and nickel ion on the conformational stability of Bacillus pasteurii UreE. FEBS Lett. 522, 135-140 https://doi.org/10.1016/S0014-5793(02)02919-8
  38. Delaglio, F., Grzesiek, S., Vuister, G. W., Zhu, G., Pfeifer, J. and Bax, A. (1995) NMRPipe: a multidimensional spectral processing system based on UNIX pipes. J. Biomol. NMR 6, 277-293
  39. Johnson, B. A. (2004) Using NMRView to visualize and analyze the NMR spectra of macromolecules. Methods Mol. Biol. 278, 313-352
  40. Won, H.-S., Yamazaki, T., Lee, T.-W., Jee, J.-G., Yoon, M.-K., Park, S.-H., Otomo, T., Aiba, H., Kyogoku, Y. and Lee, B.-J. (2000) Backbone NMR assignments of a high molecular weight protein (47 kDa), cyclic AMP receptor protein (apo-CRP). J. Biomol. NMR 16, 79-80 https://doi.org/10.1023/A:1008398103476
  41. Lee, Y.-H., Won, H.-S., Ahn, H.-C., Park, S.-H., Yagi, H., Akutsu, H. and Lee, B.-J. (2000) Backbone NMR assignments of the metal-free UreE from Bacillus pasteurii. J. Biomol. NMR 24, 361-362
  42. Won, H.-S., Yamazaki, T., Lee, T.-W., Yoon, M.-K., Park, S.-H., Kyogoku, Y. and Lee, B.-J. (2000) Structural understanding of the allosteric conformational change of cyclic AMP receptor protein by cyclic AMP binding. Biochemistry 39, 13953-13962 https://doi.org/10.1021/bi000012x

Cited by

  1. Intrinsically disordered fold of a PIAS1-binding domain of CP2b vol.18, pp.1, 2014, https://doi.org/10.6564/JKMRS.2014.18.1.030
  2. C-terminal dimerization of apo-cyclic AMP receptor protein validated in solution vol.591, pp.7, 2017, https://doi.org/10.1002/1873-3468.12613
  3. Crystallization and X-ray data collection of HP0902 fromHelicobacter pylori26695 vol.67, pp.12, 2011, https://doi.org/10.1107/S1744309111039315
  4. Structural identification of the lipopolysaccharide-binding capability of a cupin-family protein fromHelicobacter pylori vol.590, pp.17, 2016, https://doi.org/10.1002/1873-3468.12332
  5. Dimerization of TRAF-interacting protein (TRAIP) regulates the mitotic progression vol.463, pp.4, 2015, https://doi.org/10.1016/j.bbrc.2015.06.026
  6. Backbone NMR Assignments of a Prokaryotic Molecular Chaperone, Hsp33 from Escherichia coli vol.16, pp.2, 2012, https://doi.org/10.6564/JKMRS.2012.16.2.172
  7. Backbone NMR assignments of a putative secretory protein from Helicobacter pylori, using a high-field (900 MHz) NMR vol.13, pp.2, 2009, https://doi.org/10.6564/JKMRS.2009.13.2.108
  8. Ab Initio Structural Modeling of and Experimental Validation for Chlamydia trachomatis Protein CT296 Reveal Structural Similarity to Fe(II) 2-Oxoglutarate-Dependent Enzymes vol.193, pp.23, 2011, https://doi.org/10.1128/JB.05488-11