References
- Grabowski, M., Joachimiak, A., Otwinowski, Z. and Minor, W. (2007) Structural genomics: keeping up with expanding knowledge of the protein universe. Curr. Opin. Struct. Biol. 17, 347-353 https://doi.org/10.1016/j.sbi.2007.06.003
- Rigden, D. J. (2006) Understanding the cell in terms of structure and function: insights from structural genomics. Curr. Opin. Biotechnol. 17, 457-464
- Blow, N. (2008) Structural genomics: inside a protein structure initiative center. Nat. Methods 5, 203-207 https://doi.org/10.1038/nmeth0208-203
- Marsden, R. L. and Orengo, C. A. (2008) Target selection for structural genomics: an overview. Methods Mol. Biol. 426, 3-25 https://doi.org/10.1007/978-1-60327-058-8_1
- Berman, H. M. and Westbrook, J. D. (2004) The impact of structural genomics on the protein data bank. Am. J. Pharmacogenomics 4, 247-252 https://doi.org/10.2165/00129785-200404040-00004
- Weight, J., McBroom-Cerajewski, L. D., Schapira, M., Zhao, Y. and Arrowmsmith, C. H. (2008) Structural genomics and drug discovery: all in the family. Curr. Opin. Chem. Biol. 12, 32-39 https://doi.org/10.1016/j.cbpa.2008.01.045
- Lundstrom, K. (2006) Structural genomics: the ultimate approach for rational drug design. Mol. Biotechnol. 34, 205-212 https://doi.org/10.1385/MB:34:2:205
- Baker, E. N. (2007) Structural genomics as an approach towards understanding the biology of tuberculosis. J. Struct. Funct. Genomics 8, 57-65 https://doi.org/10.1007/s10969-007-9020-9
- Fan, E., Baker, D., Fields, S., Gelb, M. H., Buckner, F. S., Van Voorhis, W. C., Phizicky, E., Dumont, M., Mehlin, C., Grayhack, E., Sullivan, M., Verlinde, C., Detitta, G., Meldrum, D. R., Merritt, E. A., Earnest, T., Soltis, M., Zucker, F., Myler, P. J., Schoenfeld, L., Kim, D., Worthey, L., Lacount, D., Vignali, M., Li, J., Mondal, S., Massey, A., Carroll, B., Gulde, S., Luft, J., Desoto, L., Holl, M., Caruthers, J., Bosch, J., Robien, M., Arakaki, T., Holmes, M., Le-Trong, I. and Hol, W. G. (2008) Structural genomics of pathogenic protozoa: an overview. Methods Mol. Biol. 426, 497-513 鸀 ᨈ鵛呇䣊?⨀ ༀ 鼀 婙?鬜呇棊?⨀ Ḁ ꀀ 婙?鬜呇裊?⨀ ꄀ 婙?鬜呇?⨀ ᴀ ꈀ 婙?鬜呇죊?⨀ ꌀ 婙?鬜呇?⨀ ꐀ 婙?鬜呇࣋?⨀ ꔀ 婙?鬜呇⣋?⨀ ꘀ 婙?鬜呇䣋?⨀ ꜀ 婙?鬜呇棋?⨀ ꠀ 婙?鬜呇裋?⨀ ꤀ 婙?鬜呇?⨀ ꨀ 婙?鬜呇죋?⨀ 婙?鬜呇?⨀ 가 婙?鬜呇࣌?⨀ 관 婙?鬜呇⣌?⨀ 글 婙?鬜呇䣌?⨀ 넀 婙?鬜呇棌?⨀ 눀 婙?鬜呇裌?⨀ 대 婙?鬜呇?⨀ 됀 婙?鬜呇죌?⨀ 딀 婙?鬜呇?⨀ 렀 婙?鬜呇࣍?⨀ 뤀 婙?鬜呇⣍?⨀ 먀 婙?鬜呇䣍?⨀ 저 婙?鬜呇棍?⨀ 준 婙?鬜呇裍?⨀ 쨀 婙?鬜呇?⨀ 쬀 婙?鬜呇죍?⨀ 찀 婙?鬜呇?⨀ 촀 婙?鬜呇࣎?⨀ 츀 冒ᐈ冑呇⣎?⨀ 케 콝妚嶙呇䣎?⨀ 퀀 娘?嫚呇棎?⨀ ༀ 턀 ਈ孙呇裎?⨀ ᰀ 툀 톓ቈᄒ啇꣎?⨀ 팀 ?堙嬙啇죎?⨀ ᤀ 퐀 ᥕᅈᤚ啇?⨀ https://doi.org/10.1007/978-1-60327-058-8_33
- Frishman, D. (2003) What we have learned about prokaryotes from structural genomics. OMICS 7, 211-224 https://doi.org/10.1089/153623103322246601
- Yee, A., Gutmanas, A. and Arrowsmith, C. H. (2006) Solution NMR in structural genomics. Curr. Opin. Struct. Biol. 5, 611-617
- Shin, J., Lee, W. and Lee, W. (2008) Structural proteomics by NMR spectroscopy. Expert Rev. Proteomics 5, 589-601 https://doi.org/10.1586/14789450.5.4.589
- Sue, S.-C., Chang, C.-F., Huang, Y.-T., Chou, C.-Y. and Huang, T.-H. (2005) Challenges in NMR-based structural genomics. Physica. A 350, 12-27 https://doi.org/10.1016/j.physa.2004.11.022
- Powers, R., Mercier, K. A. and Copeland, J. C. (2008) The application of FAST-NMR for the identification of novel drug discovery targets. Drug Discov. Today 13, 172-179 https://doi.org/10.1016/j.drudis.2007.11.001
- Wishart, D. (2005) NMR spectroscopy and protein structure determination: applications to drug discovery and development. Curr. Pharm. Biotechnol. 2, 105-120
- Homans, S. W. (2004) NMR spectroscopy tools for structure-aided drug design. Angew. Chem. Int. Ed. Engl. 43, 290-300 https://doi.org/10.1002/anie.200300581
- Pellecchia, M., Sem, D. S. and Wuthrich, K. (2002) NMR in drug discovery. Nat. Rev. Drug Discov. 3, 211-219
- Ferreira, A. C., Isomoto, H., Moriyama, M., Fujioka, T., Machado, J. C. and Yamaoka, Y. (2008) Helicobacter and gastric malignancies. Helicobacter 1, 28-34
- Bartnik, W. (2008) Clinical aspects of Helicobacter pylori infection. Pol. Arch. Med. Wewn. 118, 426-430
- Covacci, A., Telford, J. L., Del Giudice, G., Parsonnet, J. and Rappuoli, R. (1999) Helicobacter pylori virulence and genetic geography. Science 284, 1328-1333 https://doi.org/10.1126/science.284.5418.1328
- Tomb, J. F., White, O., Kerlavage, A. R., Clayton, R. A., Sutton, G. G., Fleischmann, R. D., Ketchum, K. A., Klenk, H. P., Gill, S., Dougherty, B. A., Nelson, K., Quackenbush, J., Zhou, L., Kirkness, E. F., Peterson, S., Loftus, B., Richardson, D., Dodson, R., Khalak, H. G., Glodek, A., McKenney, K., Fitzegerald, L. M., Lee, N., Adams, M. D., Hickey, E. K., Berg, D. E., Gocayne, J. D., Utterback, T. R., Peterson, J. D., Kelley, J. M., Cotton, M. D., Weidman, J. M., Fujii, C., Bowman, C., Watthey, L., Wallin, E., Hayes, W. S., Borodovsky, M., Karp, P. D., Smith, H. O., Fraser, C. M. and Venter, J. C. (1997) The complete genome sequence of the gastric pathogen Helicobacter pylori. Nature 388, 539-547 https://doi.org/10.1038/41483
- Alm, R. A., Ling, L. S., Moir, D. T., King, B. L., Brown, E. D., Doig, P. C., Smith, D. R., Noonan, B., Guild, B. C., deJonge, B. L., Carmel, G., Tummino, P. J., Caruso, A., Uria-Nickelsen, M., Mills, D. M., Ives, C., Gibson, R., Merberg, D., Mills, S. D., Jiang, Q., Taylor, D. E., Vovis, G. F. and Trust, T. J. (1999) Genomic-sequence comparison of two unrelated isolates of the human gastric pathogen Helicobacter pylori. Nature 397, 176-180 https://doi.org/10.1038/16495
- Oh, J. D., Kling-Backhed, H., Giannakis, M., Xu, J., Fulton, R. S., Fulton, L. A., Cordum, H. S., Wang, C., Elliott, G., Edwards, J., Mardis, E. R., Engstrand, L. G. and Gordon, J. I. (2006) The complete genome sequence of a chronic atrophic gastritis Helicobacter pylori strain: evolution during disease progression. Proc. Natl. Acad. Sci. U.S.A. 103, 9999-10004 https://doi.org/10.1073/pnas.0603784103
- Han, K.-D., Park S.-J., Jang, S.-B. and Lee, B.-J. (2008) Backbone 1H, 15N, and 13C resonance assignments and secondary-structure of the conserved hypothetical protein HP0892 of Helicobacter pylori. Mol. Cells 25, 138-141
- Seo, M.-D., Park, S.-J., Kim, H.-J., Seok, S.-H. and Lee, B.-J. (2007) Backbone 1H, 15N, and 13C resonance assignment and secondary structure prediction of HP0495 from Helicobacter pylori. J. Biochem. Mol. Biol. 40, 839-843 https://doi.org/10.5483/BMBRep.2007.40.5.839
- Tsai, J. Y., Chen, B. T., Cheng, H. C., Chen, H. Y., Hsaio, N. W., Lyu, P. C. and Sun, Y. J. (2006) Crystal structure of HP0242, a hypothetical protein from Helicobacter pylori with a novel fold. Proteins 4, 1138-1143
- Luthy, L., Grutter, M. G. and Mittl, P. R. (2002) The crystal structure of Helicobacter pylori cysteine-rich protein B reveals a novel fold for a penicillin-binding protein. J. Biol. Chem. 277, 10187-10193 https://doi.org/10.1074/jbc.M108993200
- Hung, C. L., Liu, J. H., Chiu, W. C., Huang, S. W., Hwang, J. K. and Wang, W. C. (2007) Crystal structure of Helicobacter pylori formamidase AmiF reveals a cysteine-glutamate-lysine catalytic triad. J. Biol. Chem. 16, 12220-122295
- Kim, N. Y., Weeks, D. L., Shin, J. M., David, R. S., Young, M. K. and Sachs, H. (2002) Proteins released by Helicobacter pylori in vitro. J. Bacteriol. 184, 6155-6162 https://doi.org/10.1128/JB.184.22.6155-6162.2002
- Nam, W. H., Lee, S. M., Kim, E. S., Kim, J. H. and Jeong, J. Y. (2007) Mechanism of metronidazole resistance regulated by the fdxA gene in Helicobacter pylori. J. Life Sci. 17, 723-727 https://doi.org/10.5352/JLS.2007.17.5.723
- Mukhopadhyay, A. K., Jeong, J. Y., Dailidiene, D., Hoffman, P. S. and Berg, D. E. (2003) The fdxA ferredoxin gene can down-regulate frxA nitroreductase gene expression and is essential in many strains of Helicobacter pylori. J. Bacteriol. 185, 2927-2935 https://doi.org/10.1128/JB.185.9.2927-2935.2003
- Dunwell, J. M., Purvis, A. and Khuri, S. (2004) Cupins: the most functionally diverse protein superfamily? Phytochemistry 65, 7-17 https://doi.org/10.1016/j.phytochem.2003.08.016
- Mills, E. N. C., Jenkins, J., Marigheto, N., Belton, P. S., Gunning, A. P. and Morris, V. J. (2002) Allergens of the cupin superfamily. Biochem. Soc. Trans. 30, 925-929 https://doi.org/10.1042/BST0300925
- Dunwell, J. M., Khuri, S. and Gane, P. J. (2000) Microbial relatives of the seed storage proteins of higher plants: conservation of structure and diversification of function during evolution of the cupin superfamily. Microbiol. Mol. Biol. Rev. 64, 153-179 https://doi.org/10.1128/MMBR.64.1.153-179.2000
- Lee, C.-J., Won, H.-S., Kim, J.-M., Lee, B.-J. and Kang, S.-O. (2007) Molecular domain organization of BldD, an essential transcriptional regulator for developmental process of Streptomyces coelicolor A3(2). Proteins 68, 344-352 https://doi.org/10.1002/prot.21338
- Won, H.-S., Seo, M.-D., Ko, H.- S., Choi, W.-S. and Lee, B.-J. (2008) Thermal denaturation of the apo-cyclic AMP receptor protein and noncovalent interactions between its domains. Mol. Cells 26, 61-66
- Lee, Y.-H., Won, H.-S., Lee, M.-H. and Lee, B.-J. (2002) Effects of salt and nickel ion on the conformational stability of Bacillus pasteurii UreE. FEBS Lett. 522, 135-140 https://doi.org/10.1016/S0014-5793(02)02919-8
- Delaglio, F., Grzesiek, S., Vuister, G. W., Zhu, G., Pfeifer, J. and Bax, A. (1995) NMRPipe: a multidimensional spectral processing system based on UNIX pipes. J. Biomol. NMR 6, 277-293
- Johnson, B. A. (2004) Using NMRView to visualize and analyze the NMR spectra of macromolecules. Methods Mol. Biol. 278, 313-352
- Won, H.-S., Yamazaki, T., Lee, T.-W., Jee, J.-G., Yoon, M.-K., Park, S.-H., Otomo, T., Aiba, H., Kyogoku, Y. and Lee, B.-J. (2000) Backbone NMR assignments of a high molecular weight protein (47 kDa), cyclic AMP receptor protein (apo-CRP). J. Biomol. NMR 16, 79-80 https://doi.org/10.1023/A:1008398103476
- Lee, Y.-H., Won, H.-S., Ahn, H.-C., Park, S.-H., Yagi, H., Akutsu, H. and Lee, B.-J. (2000) Backbone NMR assignments of the metal-free UreE from Bacillus pasteurii. J. Biomol. NMR 24, 361-362
- Won, H.-S., Yamazaki, T., Lee, T.-W., Yoon, M.-K., Park, S.-H., Kyogoku, Y. and Lee, B.-J. (2000) Structural understanding of the allosteric conformational change of cyclic AMP receptor protein by cyclic AMP binding. Biochemistry 39, 13953-13962 https://doi.org/10.1021/bi000012x
Cited by
- Intrinsically disordered fold of a PIAS1-binding domain of CP2b vol.18, pp.1, 2014, https://doi.org/10.6564/JKMRS.2014.18.1.030
- C-terminal dimerization of apo-cyclic AMP receptor protein validated in solution vol.591, pp.7, 2017, https://doi.org/10.1002/1873-3468.12613
- Crystallization and X-ray data collection of HP0902 fromHelicobacter pylori26695 vol.67, pp.12, 2011, https://doi.org/10.1107/S1744309111039315
- Structural identification of the lipopolysaccharide-binding capability of a cupin-family protein fromHelicobacter pylori vol.590, pp.17, 2016, https://doi.org/10.1002/1873-3468.12332
- Dimerization of TRAF-interacting protein (TRAIP) regulates the mitotic progression vol.463, pp.4, 2015, https://doi.org/10.1016/j.bbrc.2015.06.026
- Backbone NMR Assignments of a Prokaryotic Molecular Chaperone, Hsp33 from Escherichia coli vol.16, pp.2, 2012, https://doi.org/10.6564/JKMRS.2012.16.2.172
- Backbone NMR assignments of a putative secretory protein from Helicobacter pylori, using a high-field (900 MHz) NMR vol.13, pp.2, 2009, https://doi.org/10.6564/JKMRS.2009.13.2.108
- Ab Initio Structural Modeling of and Experimental Validation for Chlamydia trachomatis Protein CT296 Reveal Structural Similarity to Fe(II) 2-Oxoglutarate-Dependent Enzymes vol.193, pp.23, 2011, https://doi.org/10.1128/JB.05488-11