• Title/Summary/Keyword: Hyperspectral analysis

Search Result 166, Processing Time 0.024 seconds

Analysis of Hyperspectral Dentin Data Using Independent Component Analysis

  • Jung, Sung-Hwan
    • Journal of Korea Multimedia Society
    • /
    • v.12 no.12
    • /
    • pp.1755-1760
    • /
    • 2009
  • In this research, for the first time, we tried to analyse Raman hyperspectral dentin data using Independent Component Analysis (ICA) to see its possibility of adoption for the dental analysis software. We captured hyperspectral dentin data on 569 spots on a molar with dental lesion by HR800 Micro Raman Spectrometer at UMKC-CRISP (University of Missouri at Kansas City-Center for Research on Interfacial Structure and Properties). Each spot has 1,005 hyperspectral data. We applied ICA to the captured hyperspectral data of dentin for evaluating ICA approach, and compared it with the well known multivariate analysis method, PCA. As a result of the experiment, ICA approach shows better local characteristic of dentin than the result of PCA. We confirmed that ICA also could be a good method along with PCA in the dental analysis software.

  • PDF

Automatic Cross-calibration of Multispectral Imagery with Airborne Hyperspectral Imagery Using Spectral Mixture Analysis

  • Yeji, Kim;Jaewan, Choi;Anjin, Chang;Yongil, Kim
    • Journal of the Korean Society of Surveying, Geodesy, Photogrammetry and Cartography
    • /
    • v.33 no.3
    • /
    • pp.211-218
    • /
    • 2015
  • The analysis of remote sensing data depends on sensor specifications that provide accurate and consistent measurements. However, it is not easy to establish confidence and consistency in data that are analyzed by different sensors using various radiometric scales. For this reason, the cross-calibration method is used to calibrate remote sensing data with reference image data. In this study, we used an airborne hyperspectral image in order to calibrate a multispectral image. We presented an automatic cross-calibration method to calibrate a multispectral image using hyperspectral data and spectral mixture analysis. The spectral characteristics of the multispectral image were adjusted by linear regression analysis. Optimal endmember sets between two images were estimated by spectral mixture analysis for the linear regression analysis, and bands of hyperspectral image were aggregated based on the spectral response function of the two images. The results were evaluated by comparing the Root Mean Square Error (RMSE), the Spectral Angle Mapper (SAM), and average percentage differences. The results of this study showed that the proposed method corrected the spectral information in the multispectral data by using hyperspectral data, and its performance was similar to the manual cross-calibration. The proposed method demonstrated the possibility of automatic cross-calibration based on spectral mixture analysis.

A Review of Hyperspectral Imaging Analysis Techniques for Onset Crop Disease Detection, Identification and Classification

  • Awosan Elizabeth Adetutu;Yakubu Fred Bayo;Adekunle Abiodun Emmanuel;Agbo-Adediran Adewale Opeyemi
    • Journal of Forest and Environmental Science
    • /
    • v.40 no.1
    • /
    • pp.1-8
    • /
    • 2024
  • Recently, intensive research has been conducted to develop innovative methods for diagnosing plant diseases based on hyperspectral technologies. Hyperspectral analysis is a new subject that combines optical spectroscopy and image analysis methods, which makes it possible to simultaneously evaluate both physiological and morphological parameters. Among the physiological and morphological parameters are classifying healthy and diseased plants, assessing the severity of the disease, differentiating the types of pathogens, and identifying the symptoms of biotic stresses at early stages, including during the incubation period, when the symptoms are not visible to the human eye. Plant diseases cause significant economic losses in agriculture around the world as the symptoms of diseases usually appear when the plants are infected severely. Early detection, quantification, and identification of plant diseases are crucial for the targeted application of plant protection measures in crop production. Hence, this can be done by possible applications of hyperspectral sensors and platforms on different scales for disease diagnosis. Further, the main areas of application of hyperspectral sensors in the diagnosis of plant diseases are considered, such as detection, differentiation, and identification of diseases, estimation of disease severity, and phenotyping of disease resistance of genotypes. This review provides a deeper understanding, of basic principles and implementation of hyperspectral sensors that can measure pathogen-induced changes in plant physiology. Hence, it brings together critically assessed reports and evaluations of researchers who have adopted the use of this application. This review concluded with an overview that hyperspectral sensors, as a non-invasive system of measurement can be adopted in early detection, identification, and possible solutions to farmers as it would empower prior intervention to help moderate against decrease in yield and/or total crop loss.

Analyzing Preprocessing for Correcting Lighting Effects in Hyperspectral Images (초분광영상의 조명효과 보정 전처리기법 분석)

  • Yeong-Sun Song
    • Journal of the Korean Society of Industry Convergence
    • /
    • v.26 no.5
    • /
    • pp.785-792
    • /
    • 2023
  • Because hyperspectral imaging provides detailed spectral information across a broad range of wavelengths, it can be utilized in numerous applications, including environmental monitoring, food quality inspection, medical diagnosis, material identification, art authentication, and crime scene analysis. However, hyperspectral images often contain various types of distortions due to the environmental conditions during image acquisition, which necessitates the proper removal of these distortions through a data preprocessing process. In this study, a preprocessing method was investigated to effectively correct the distortion caused by artificial light sources used in indoor hyperspectral imaging. For this purpose, a halogen-tungsten artificial light source was installed indoors, and hyperspectral images were acquired. The acquired images were then corrected for distortion using a preprocessing that does not require complex auxiliary equipment. After the corrections were made, the results were analyzed. According to the analysis, a statistical transformation technique using mean and standard deviation with reference to a reference signal was found to be the most effective in correcting distortions caused by artificial light sources.

Cluster ing for Analysis of Raman Hyper spectral Dental Data

  • Jung, Sung-Hwan
    • Journal of Korea Multimedia Society
    • /
    • v.16 no.1
    • /
    • pp.19-28
    • /
    • 2013
  • In this research, we presented an effective clustering method based on ICA for the analysis of huge Raman hyperspectral dental data. The hyperspectral dataset captured by HR800 micro Raman spectrometer at UMKC-CRISP(University of Missouri-Kansas City Center for Research on Interfacial Structure and Properties), has 569 local points. Each point has 1,005 hyperspectal dentin data. We compared the clustering effectiveness and the clustering time for the case of using all dataset directly and the cases of using the scores after PCA and ICA. As the result of experiment, the cases of using the scores after PCA and ICA showed, not only more detailed internal dentin information in the aspect of medical analysis, but also about 7~19 times much shorter processing times for clustering. ICA based approach also presented better performance than that of PCA, in terms of the detailed internal information of dentin and the clustering time. Therefore, we could confirm the effectiveness of ICA for the analysis of Raman hyperspectral dental data.

Through-field Investigation of Stray Light for the Fore-optics of an Airborne Hyperspectral Imager

  • Cha, Jae Deok;Lee, Jun Ho;Kim, Seo Hyun;Jung, Do Hwan;Kim, Young Soo;Jeong, Yumee
    • Current Optics and Photonics
    • /
    • v.6 no.3
    • /
    • pp.313-322
    • /
    • 2022
  • Remote-sensing optical payloads, especially hyperspectral imagers, have particular issues with stray light because they often encounter high-contrast target/background conditions, such as sun glint. While developing an optical payload, we usually apply several stray-light analysis methods, including forward and backward analyses, separately or in combination, to support lens design and optomechanical design. In addition, we often characterize the stray-light response over a full field to support calibration, or when developing an algorithm to correct stray-light errors. For this purpose, we usually use forward analysis across the entire field, but this requires a tremendous amount of computational time. In this paper, we propose a sequence of forward-backward-forward analyses to more effectively investigate the through-field response of stray light, utilizing the combined advantages of the individual methods. The application is an airborne hyperspectral imager for creating hyperspectral maps from 900 to 1700 nm in a 5-nm-continuous band. With the proposed method, we have investigated the through-field response of stray light to an effective accuracy of 0.1°, while reducing computation time to 1/17th of that for a conventional, forward-only stray-light analysis.

Single-Kernel Corn Analysis by Hyperspectral Imaging

  • Cogdill, R.P.;Hurburgh Jr., C.R.;Jensen, T.C.;Jones, R.W.
    • Proceedings of the Korean Society of Near Infrared Spectroscopy Conference
    • /
    • 2001.06a
    • /
    • pp.1521-1521
    • /
    • 2001
  • The objective of the research being presented was to construct and calibrate a spectrometer for the analysis of single kernels of corn. In light of the difficulties associated with capturing the spatial variability in composition of corn kernels by single-beam spectrometry, a hyperspectral imaging spectrometer was constructed with the intention that it would be used to analyze single kernels of corn for the prediction of moisture and oil content. The spectrometer operated in the range of 750- 1090 nanometers. After evaluating four methods of standardizing the output from the spectrometer, calibrations were made to predict whole-kernel moisture and oil content from the hyperspectral image data. A genetic algorithm was employed to reduce the number of wavelengths imaged and to optimize the calibrations. The final standard errors of prediction during cross-validation (SEPCV) were 1.22% and 1.25% for moisture and oil content, respectively. It was determined, by analysis of variance, that the accuracy and precision of single-kernel corn analysis by hyperspectral imaging is superior to the single kernel reference chemistry method (as tested).

  • PDF

Independent Component Analysis of Mixels in Agricultural Land Using An Airborne Hyperspectral Sensor Image

  • Kosaka, Naoko;Shimozato, Masao;Uto, Kuniaki;Kosugi, Yukio
    • Proceedings of the KSRS Conference
    • /
    • 2003.11a
    • /
    • pp.334-336
    • /
    • 2003
  • Satellite and airborne hyperspectral sensor images are suitable for investigating the vegetation state in agricultural land. However, image data obtained by an optical sensor inevitably includes mixels caused by high altitude observation. Therefore, mixel analysis method, which estimates both the pure spectra and the coverage of endmembers simultaneously, is required in order to distinguish the qualitative spectral changes due to the chlorophyll quantity or crop variety, from the quantitative coverage change. In this paper, we apply our agricultural independent component analysis (ICA) model to an airborne hyperspectral sensor image, which includes noise and fluctuation of coverage, and estimate pure spectra and the mixture ratio of crop and soil in agricultural land simultaneously.

  • PDF

A Comparison of Classification Techniques in Hyperspectral Image (하이퍼스펙트럴 영상의 분류 기법 비교)

  • 가칠오;김대성;변영기;김용일
    • Proceedings of the Korean Society of Surveying, Geodesy, Photogrammetry, and Cartography Conference
    • /
    • 2004.11a
    • /
    • pp.251-256
    • /
    • 2004
  • The image classification is one of the most important studies in the remote sensing. In general, the MLC(Maximum Likelihood Classification) classification that in consideration of distribution of training information is the most effective way but it produces a bad result when we apply it to actual hyperspectral image with the same classification technique. The purpose of this research is to reveal that which one is the most effective and suitable way of the classification algorithms iii the hyperspectral image classification. To confirm this matter, we apply the MLC classification algorithm which has distribution information and SAM(Spectral Angle Mapper), SFF(Spectral Feature Fitting) algorithm which use average information of the training class to both multispectral image and hyperspectral image. I conclude this result through quantitative and visual analysis using confusion matrix could confirm that SAM and SFF algorithm using of spectral pattern in vector domain is more effective way in the hyperspectral image classification than MLC which considered distribution.

  • PDF

Design and Implementation of Hyperspectral Image Analysis Tool: HYVIEW

  • Huan, Nguyen van;Kim, Ha-Kil;Kim, Sun-Hwa;Lee, Kyu-Sung
    • Korean Journal of Remote Sensing
    • /
    • v.23 no.3
    • /
    • pp.171-179
    • /
    • 2007
  • Hyperspectral images have shown a great potential for the applications in resource management, agriculture, mineral exploration and environmental monitoring. However, due to the large volume of data, processing of hyperspectral images faces some difficulties. This paper introduces the development of an image processing tool (HYVIEW) that is particularly designed for handling hyperspectral image data. Current version of HYVIEW is dealing with efficient algorithms for displaying hyperspectral images, selecting bands to create color composites, and atmospheric correction. Three band-selection schemes for producing color composites are available based on three most popular indexes of OIF, SI and CI. HYVIEW can effectively demonstrate the differences in the results of the three schemes. For the atmospheric correction, HYVIEW utilizes a pre-calculated LUT by which the complex process of correcting atmospheric effects can be performed fast and efficiently.