• Title/Summary/Keyword: Hyperspectral Images

Search Result 141, Processing Time 0.027 seconds

Hyperspectral Image Recognition for Tumor Detection (하이퍼스펙트럴 영상 인식을 통한 종양 검출)

  • 김한열;김인택
    • Proceedings of the IEEK Conference
    • /
    • 2003.07d
    • /
    • pp.1545-1548
    • /
    • 2003
  • This paper presents a method for detecting skin tumors on chicken carcasses using hyperspectral images. It utilizes both fluorescence and reflectance image information in hyperspectral images. A detection system that is built on this concept can increase detection rate and reduce processing time. Chicken carcasses are examined first using band ratio FCM information of fluorescence image and it results in candidate regions for skin tumor. Next classifier selects the real tumor spots using PCA components information of reflectance image from the candidate regions.

  • PDF

The Application of the Spectral Similarity Scale Algorithm and Expectation-Maximization for Unsupervised Change Detection using Hyperspectral Image (하이퍼스펙트럴 영상의 무감독 변화탐지를 위한 SSS 알고리즘과 기대최대화 기법의 적용)

  • Kim, Yong-Hyun;Kim, Dae-Sung;Kim, Yong-Il;Yu, Ki-Yun
    • 한국공간정보시스템학회:학술대회논문집
    • /
    • 2007.06a
    • /
    • pp.139-144
    • /
    • 2007
  • Recording data in hundreds of narrow contiguous spectral intervals, hyperspectral images have provided the opportunity to detect small differences in material composition. But a limitation of a hyperspectral image is the signal to noise ratio (SNR) lower than that of a multispectral image. This paper presents the efficiency of Spectral Similarity Scale (SSS) in change detection of hyperspectral image and the experiment was performed with Hyperion data. SSS is an algorithm that objectively quantifies differences between reflectance spectra in both magnitude and direction dimensions. The thresholds for detecting the change area were determined through Expectation-Maximization (EM) algorithm. The experimental result shows that the SSS algorithm and EM algorithm are efficient enough to be applied to the unsupervised change detection of hyperspectral images.

  • PDF

Hyperspectral Fluorescence Imaging for Mouse Skin Tumor Detection

  • Kong, Seong G.;Martin, Matthew E.;Vo-Dinh, Tuan
    • ETRI Journal
    • /
    • v.28 no.6
    • /
    • pp.770-776
    • /
    • 2006
  • This paper presents a hyperspectral imaging technique based on laser-induced fluorescence for non-invasive detection of tumorous tissue on mouse skin. Hyperspectral imaging sensors collect image data in a number of narrow, adjacent spectral bands. Such high-resolution measurement of spectral information reveals contiguous emission spectra at each image pixel useful for the characterization of constituent materials. The hyperspectral image data used in this study are fluorescence images of mouse skin consisting of 21 spectral bands in the visible spectrum of the wavelengths ranging from 440 nm to 640 nm. Fluorescence signal is measured with the use of laser excitation at 337 nm. An acousto-optic tunable filter (AOTF) is used to capture images at 10 nm intervals. All spectral band images are spatially registered with the reference band image at 490 nm to obtain exact pixel correspondences by compensating the spatial offsets caused by the refraction differences in AOTF at different wavelengths during the image capture procedure. The unique fluorescence spectral signatures demonstrate a good separation to differentiate malignant tumors from normal tissues for rapid detection of skin cancers without biopsy.

  • PDF

Determination of Germination Quality of Cucumber (Cucumis Sativus) Seed by LED-Induced Hyperspectral Reflectance Imaging

  • Mo, Changyeun;Lim, Jongguk;Lee, Kangjin;Kang, Sukwon;Kim, Moon S.;Kim, Giyoung;Cho, Byoung-Kwan
    • Journal of Biosystems Engineering
    • /
    • v.38 no.4
    • /
    • pp.318-326
    • /
    • 2013
  • Purpose: We developed a viability evaluation method for cucumber (Cucumis sativus) seed using hyperspectral reflectance imaging. Methods: Reflectance spectra of cucumber seeds in the 400 to 1000 nm range were collected from hyperspectral reflectance images obtained using blue, green, and red LED illumination. A partial least squares-discriminant analysis (PLS-DA) was developed to predict viable and non-viable seeds. Various ranges of spectra induced by four types of LEDs (Blue, Green, Red, and RGB) were investigated to develop the classification models. Results: PLS-DA models for spectra in the 600 to 700 nm range showed 98.5% discrimination accuracy for both viable and non-viable seeds. Using images based on the PLS-DA model, the discrimination accuracy for viable and non-viable seeds was 100% and 99%, respectively Conclusions: Hyperspectral reflectance images made using LED light can be used to select high quality cucumber seeds.

Mosaic image generation of AISA Eagle hyperspectral sensor using SIFT method (SIFT 기법을 이용한 AISA Eagle 초분광센서의 모자이크영상 생성)

  • Han, You Kyung;Kim, Yong Il;Han, Dong Yeob;Choi, Jae Wan
    • Journal of the Korean Society of Surveying, Geodesy, Photogrammetry and Cartography
    • /
    • v.31 no.2
    • /
    • pp.165-172
    • /
    • 2013
  • In this paper, high-quality mosaic image is generated by high-resolution hyperspectral strip images using scale-invariant feature transform (SIFT) algorithm, which is one of the representative image matching methods. The experiments are applied to AISA Eagle images geo-referenced by using GPS/INS information acquired when it was taken on flight. The matching points between three strips of hyperspectral images are extracted using SIFT method, and the transformation models between images are constructed from the points. Mosaic image is, then, generated using the transformation models constructed from corresponding images. Optimal band appropriate for the matching point extraction is determined by selecting representative bands of hyperspectral data and analyzing the matched results based on each band. Mosaic image generated by proposed method is visually compared with the mosaic image generated from initial geo-referenced AISA hyperspectral images. From the comparison, we could estimate geometrical accuracy of generated mosaic image and analyze the efficiency of our methodology.

Soil Moisture Prediction Based on Hyperspectral Image using CNN(Convolution Neural Network) (합성곱신경망을 이용한 초분광영상기반 토양수분예측)

  • Jeon, Nam-Youl;Lee, Bong-Kyu
    • Journal of Software Assessment and Valuation
    • /
    • v.17 no.2
    • /
    • pp.75-81
    • /
    • 2021
  • Since plant growth is greatly influenced by moisture, it is important to control the soil to have optimal moisture for the plant being grown. Recently, researches on automatically analyzing plant growth information including soil moisture using spectral images are being conducted. However, hyperspectral images are difficult to use due to huge amount of data appearing in spectral bands. In this paper, we propose a method to solve the complexity of hyperspectral images using a CNN. Since the proposed method automatically analyzes the entire band of the target hyperspectral using deep learning, there is no need to make an effort to find a specific band for analysis of each image. In order to show the effectiveness of the proposed system, we conduct an experiment to analyze moistures using hyperspectral images obtained from soil.

Detecting Drought Stress in Soybean Plants Using Hyperspectral Fluorescence Imaging

  • Mo, Changyeun;Kim, Moon S.;Kim, Giyoung;Cheong, Eun Ju;Yang, Jinyoung;Lim, Jongguk
    • Journal of Biosystems Engineering
    • /
    • v.40 no.4
    • /
    • pp.335-344
    • /
    • 2015
  • Purpose: Soybean growth is adversely affected by environmental stresses such as drought, extreme temperatures, and nutrient deficiency. The objective of this study was to develop a method for rapid measurement of drought stress in soybean plants using a hyperspectral fluorescence imaging technique. Methods: Hyperspectral fluorescence images were obtained using UV-A light with 365 nm excitation. Two soybean cultivars under drought stress were analyzed. A partial least square regression (PLSR) model was used to predict drought stress in soybeans. Results: Partial least square (PLS) images were obtained for the two soybean cultivars using the results of the developed model during the period of drought stress treatment. Analysis of the PLS images showed that the accuracy of drought stress discrimination in the two cultivars was 0.973 for an 8-day treatment group and 0.969 for a 6-day treatment group. Conclusions: These results validate the use of hyperspectral fluorescence images for assessing drought stress in soybeans.

Hyperspectral Imaging and Partial Least Square Discriminant Analysis for Geographical Origin Discrimination of White Rice

  • Mo, Changyeun;Lim, Jongguk;Kwon, Sung Won;Lim, Dong Kyu;Kim, Moon S.;Kim, Giyoung;Kang, Jungsook;Kwon, Kyung-Do;Cho, Byoung-Kwan
    • Journal of Biosystems Engineering
    • /
    • v.42 no.4
    • /
    • pp.293-300
    • /
    • 2017
  • Purpose: This study aims to propose a method for fast geographical origin discrimination between domestic and imported rice using a visible/near-infrared (VNIR) hyperspectral imaging technique. Methods: Hyperspectral reflectance images of South Korean and Chinese rice samples were obtained in the range of 400 nm to 1000 nm. Partial least square discriminant analysis (PLS-DA) models were developed and applied to the acquired images to determine the geographical origin of the rice samples. Results: The optimal pixel dimensions and spectral pretreatment conditions for the hyperspectral images were identified to improve the discrimination accuracy. The results revealed that the highest accuracy was achieved when the hyperspectral image's pixel dimension was $3.0mm{\times}3.0mm$. Furthermore, the geographical origin discrimination models achieved a discrimination accuracy of over 99.99% upon application of a first-order derivative, second-order derivative, maximum normalization, or baseline pretreatment. Conclusions: The results demonstrated that the VNIR hyperspectral imaging technique can be used to discriminate geographical origins of rice.

Weighted Collaborative Representation and Sparse Difference-Based Hyperspectral Anomaly Detection

  • Wang, Qianghui;Hua, Wenshen;Huang, Fuyu;Zhang, Yan;Yan, Yang
    • Current Optics and Photonics
    • /
    • v.4 no.3
    • /
    • pp.210-220
    • /
    • 2020
  • Aiming at the problem that the Local Sparse Difference Index algorithm has low accuracy and low efficiency when detecting target anomalies in a hyperspectral image, this paper proposes a Weighted Collaborative Representation and Sparse Difference-Based Hyperspectral Anomaly Detection algorithm, to improve detection accuracy for a hyperspectral image. First, the band subspace is divided according to the band correlation coefficient, which avoids the situation in which there are multiple solutions of the sparse coefficient vector caused by too many bands. Then, the appropriate double-window model is selected, and the background dictionary constructed and weighted according to Euclidean distance, which reduces the influence of mixing anomalous components of the background on the solution of the sparse coefficient vector. Finally, the sparse coefficient vector is solved by the collaborative representation method, and the sparse difference index is calculated to complete the anomaly detection. To prove the effectiveness, the proposed algorithm is compared with the RX, LRX, and LSD algorithms in simulating and analyzing two AVIRIS hyperspectral images. The results show that the proposed algorithm has higher accuracy and a lower false-alarm rate, and yields better results.

Automatic Cross-calibration of Multispectral Imagery with Airborne Hyperspectral Imagery Using Spectral Mixture Analysis

  • Yeji, Kim;Jaewan, Choi;Anjin, Chang;Yongil, Kim
    • Journal of the Korean Society of Surveying, Geodesy, Photogrammetry and Cartography
    • /
    • v.33 no.3
    • /
    • pp.211-218
    • /
    • 2015
  • The analysis of remote sensing data depends on sensor specifications that provide accurate and consistent measurements. However, it is not easy to establish confidence and consistency in data that are analyzed by different sensors using various radiometric scales. For this reason, the cross-calibration method is used to calibrate remote sensing data with reference image data. In this study, we used an airborne hyperspectral image in order to calibrate a multispectral image. We presented an automatic cross-calibration method to calibrate a multispectral image using hyperspectral data and spectral mixture analysis. The spectral characteristics of the multispectral image were adjusted by linear regression analysis. Optimal endmember sets between two images were estimated by spectral mixture analysis for the linear regression analysis, and bands of hyperspectral image were aggregated based on the spectral response function of the two images. The results were evaluated by comparing the Root Mean Square Error (RMSE), the Spectral Angle Mapper (SAM), and average percentage differences. The results of this study showed that the proposed method corrected the spectral information in the multispectral data by using hyperspectral data, and its performance was similar to the manual cross-calibration. The proposed method demonstrated the possibility of automatic cross-calibration based on spectral mixture analysis.