DOI QR코드

DOI QR Code

Soil Moisture Prediction Based on Hyperspectral Image using CNN(Convolution Neural Network)

합성곱신경망을 이용한 초분광영상기반 토양수분예측

  • 전남열 (제주대학교 전산통계학과) ;
  • 이봉규 (제주대학교 전산통계학과)
  • Received : 2021.08.09
  • Accepted : 2021.12.20
  • Published : 2021.12.31

Abstract

Since plant growth is greatly influenced by moisture, it is important to control the soil to have optimal moisture for the plant being grown. Recently, researches on automatically analyzing plant growth information including soil moisture using spectral images are being conducted. However, hyperspectral images are difficult to use due to huge amount of data appearing in spectral bands. In this paper, we propose a method to solve the complexity of hyperspectral images using a CNN. Since the proposed method automatically analyzes the entire band of the target hyperspectral using deep learning, there is no need to make an effort to find a specific band for analysis of each image. In order to show the effectiveness of the proposed system, we conduct an experiment to analyze moistures using hyperspectral images obtained from soil.

식물의 생육은 수분에 의해서 크게 좌우되기 때문에 토양이 재배하는 식물에 최적의 수분을 가지도록 조절하는 것은 중요하다. 최근 초분광영상을 통하여 식물의 생육정보를 자동으로 분석하는 연구가 진행되고 있으며 토양의 수분함량을 측정하는 것도 포함한다. 그러나 초분광의 경우 많은 분광밴드에서 나타나는 방대한 데이터로 인하여 분석과정이 복잡하기 때문에 사용이 어렵다. 본 논문에서는 초분광영상의 복잡도를 합성곱신경망 (Convolution Neural Network, CNN)을 통하여 해결하는 방법을 제안한다. 제안한 방법은 대상 초분광의 전체 대역을 심층학습방법을 사용하여 자동 분석하기 때문에 각 영상에 대해 인식에 필요한 특정 대역을 찾는 노력을 할 필요가 없다. 제안 시스템의 유효성을 보이기 위해서 토양에서 얻은 초분광영상을 이용한 수분함량분석 실험을 수행하고 결과를 보인다.

Keywords

Acknowledgement

이 논문은 2021학년도 제주대학교 교원성과 지원사업에 의하여 연구되었음

References

  1. T. Lillesand, R.-W. Kiefer and J. Chipman, Remote sensing and image interpretation, John Wiley & Sons, Hoboken, 2015, https://www.wiley.com/en-us/Remote+Sensing+and+Image+Interpretati on%2C+7th+Edition-p-9781118343289.
  2. A. F. H. Goetz, "Three Decades of Hyperspectral Remote Sensing of the Earth: a Personal View", Remote Sensing of Environment, vol. 113, pp. 5-16, 2009, https://doi.org/10.1016/j.rse.2007.12.014.
  3. S. H. Kim, J. G. Kang, and C. S. Ryu, "Estimation of Moisture Content in Cucumber and Watermelon Seedlings Using Hyperspectral Imagery", Protected Horticulture and Plant Factory, vol. 27, no. 1, pp. 34-39, 2018, https://doi.org/10.12791/KSBEC.2018.27.1.34.
  4. C. Rodarmel, and J. Shan, "Principal component analysis for hyperspectral image classification", Surveying and Land Information Science, vol. 62, no. 2, pp. 115-122, 2002, https://www.proquest.com/docview/202974751?pq-origsite=gscholar&fromopenview=true.
  5. Felix M. Riese and Sina Keller, "Introducing a Framework of Self-Organizing Maps for regression of Soil moisture wiyh Hyperspectral Data", IEEE IGARSS, pp. 6151-6154, 2018, https://doi.org/10.1109/IGARSS.2018.8517812
  6. V. Slavkovikj, S. Verstockt, W. De Neve, S. Van Hoecke, and R. Van de Walle, "Hyperspectral image classification with convolutional neural networks", Proc. of 23rd ACM International Conference on Multimedia, Brisbane, Australia, pp. 1159-1162, 2015, https://doi.org/10.1145/2733373.2806306.
  7. Y. Chen,, H. Jiang, C. Li, X. Jia and P. Ghamisi, "Deep feature extraction and classification of hyperspectral images based on convolutional neural networks", IEEE Transactions on Geoscience and Remote Sensing, vol. 54, no. 10, pp. 6232-6251, 2016, https://doi.org/10.1109/TGRS.2016.2584107.
  8. H. Zhang, Y. Li, Y. Zhang and Q. Shen, "Spectral-spatial classification of hyperspectral imagery using a dual-channel convolutional neural network", Remote Sensing Letters, vol. 8, no. 5, pp. 438-447, 2017, https://doi.org/10.1080/2150704X.2017.1280200.
  9. M. He, B. Li, and H. Chen, "Multi-scale 3D deep convolutional neural network for hyperspectral image classification", Proc. of 2017 IEEE International Conference on Image Processing, Beijing, pp. 3904-3908, 2017, https://doi.org/10.1109/ICIP.2017.8297014.
  10. Y. Li, H. Zhang and Q. Shen, "Spectralspatial classification of hyperspectral imagery with 3D convolutional neural network", Remote Sensing, vol. 9, no. 1, pp. 67, 2017, https://doi.org/10.1016/j.patrec.2018.10.003.
  11. Alex Krizhevsky, Ilya Sutskever and Geoffrey E. Hinton, "ImageNet Classification with Deep Convolutional Neural Networks", Proceedings of the 25th International Conference on Neural Information Processing Systems, pp. 1097-1105, 2011, https://papers.nips.cc/paper/4824-imagenet-classification-with-deep-convolutional-neural-networks.pdf.
  12. Karen Simonyan, Andrew Zisserman, "Very Deep Convolutional Networks for Large-Scale Image Recognition", Proc. of ICLR, pp. 1-14, 2015, https://arxiv.org/pdf/1409.1556.pdf.