• Title/Summary/Keyword: Hyperspectral Images

Search Result 146, Processing Time 0.02 seconds

Detection of Toluene Hazardous and Noxious Substances (HNS) Based on Hyperspectral Remote Sensing (초분광 원격탐사 기반 위험·유해물질 톨루엔 탐지)

  • Park, Jae-Jin;Park, Kyung-Ae;Foucher, Pierre-Yves;Kim, Tae-Sung;Lee, Moonjin
    • Journal of the Korean earth science society
    • /
    • v.42 no.6
    • /
    • pp.623-631
    • /
    • 2021
  • The increased transport of marine hazardous and noxious substances (HNS) has resulted in frequent HNS spill accidents domestically and internationally. There are about 6,000 species of HNS internationally, and most of them have toxic properties. When an accidental HNS spill occurs, it can destroys the marine ecosystem and can damage life and property due to explosion and fire. Constructing a spectral library of HNS according to wavelength and developing a detection algorithm would help prepare for accidents. In this study, a ground HNS spill experiment was conducted in France. The toluene spectrum was determined through hyperspectral sensor measurements. HNS present in the hyperspectral images were detected by applying the spectral mixture algorithm. Preprocessing principal component analysis (PCA) removed noise and performed dimensional compression. The endmember spectra of toluene and seawater were extracted through the N-FINDR technique. By calculating the abundance fraction of toluene and seawater based on the spectrum, the detection accuracy of HNS in all pixels was presented as a probability. The probability was compared with radiance images at a wavelength of 418.15 nm to select abundance fractions with maximum detection accuracy. The accuracy exceeded 99% at a ratio of approximately 42%. Response to marine spills of HNS are presently impeded by the restricted access to the site because of high risk of exposure to toxic compounds. The present experimental and detection results could help estimate the area of contamination with HNS based on hyperspectral remote sensing.

A Study on the EO-1 Hyperion's Optimized Band Selection Method for Land Cover/Land Use Map (토지피복지도 제작을 위한 초분광 영상 EO-1 Hyperion의 최적밴드 선택기법 연구)

  • Jang Se-Jin;Lee Ho-Nam;Kim Jin-Kwang;Chae Ok-Sam
    • Journal of the Korean Society of Surveying, Geodesy, Photogrammetry and Cartography
    • /
    • v.24 no.3
    • /
    • pp.289-297
    • /
    • 2006
  • The Land Cover/Land Use Map have been constructed from 1998, which has hierarchical structure according to land cover/land use system. Level 1 classification Map have done using Landsat satellite image over whole Korean peninsula. Level II classification Map have been digitized using IRS-1C, 1D, KOMPSAT and SPOT5 satellite images resolution-merged with low resolution color images. Level II Land Cover/Land Use Map construction by digitizing method, however, is consuming enormous expense for satellite image acquisition, image process and Land Cover/Land Use Map construction. In this paper, the possibility of constructing Level II Land Cover/Land Use Map using hyperspectral satellite image of EO-1 Hyperion, which is studied a lot recently, is studied. The comparison of classifications using Hyperion satellite image offering more spectral information and Landsat-7 ETM+ image is performed to evaluate the availability of Hyperion satellite image. Also, the algorithm of the optimal band selection is presented for effective application of hyperspectral satellite image.

Relative Radiometric Normalization of Hyperion Hyperspectral Images Through Automatic Extraction of Pseudo-Invariant Features for Change Detection (자동 PIF 추출을 통한 Hyperion 초분광영상의 상대 방사정규화 - 변화탐지를 목적으로)

  • Kim, Dae-Sung;Kim, Yong-Il
    • Journal of the Korean Society of Surveying, Geodesy, Photogrammetry and Cartography
    • /
    • v.26 no.2
    • /
    • pp.129-137
    • /
    • 2008
  • This study focuses on the radiometric normalization, which is one of the pre-processing steps to apply the change detection technique fur hyperspectral images. The PIFs which had radiometric consistency under the time interval were automatically extracted by applying spectral angle, and used as sample pixels for linear regression of the radiometric normalization. We also dealt with the problem about the number of PIFs for linear regression with iteratively quantitative methods. The results were assessed in comparison with image regression, histogram matching, and FLAASH. In conclusion, we show that linear regression method with PIFs can carry out the efficient result for radiometric normalization.

Applicability Evaluation of Endmember Extraction Algorithms on the AISA Hyperspectral Images (AISA 초분광 영상에 대한 Endmember 추출 알고리즘의 적용성 분석)

  • Song, Ahram;Chang, Anjin;Kim, Yong-Il;Choi, Jaewan
    • Korean Journal of Remote Sensing
    • /
    • v.29 no.5
    • /
    • pp.527-535
    • /
    • 2013
  • Extraction of correct endmembers is prerequisite to successful spectral unmixing analysis. Various endmember extraction algorithms have been proposed and most experiments based on endmember extraction have used synthetic image and AVIRIS image data. However, these data can present different characteristics comparing with hyperspectral images acquired from real domestic environment. For this study, a test-bed was constructed for analysing the difference on diverse substances and sizes in domestic areas, and AISA hyperspectral imagery acquired from the test-bed was tested with two well-known endmember extraction algorithms: IEA, and N-FINDR. The results indicated that two different algorithms depended on the number of endmembers and material types in the test-bed. Therefore, optimized number of endmembers and characteristics of materials in test-bed site should be considered for the effective application of endmember extraction algorithms.

CREATING MULTIPLE CLASSIFIERS FOR THE CLASSIFICATION OF HYPERSPECTRAL DATA;FEATURE SELECTION OR FEATURE EXTRACTION

  • Maghsoudi, Yasser;Rahimzadegan, Majid;Zoej, M.J.Valadan
    • Proceedings of the KSRS Conference
    • /
    • 2007.10a
    • /
    • pp.6-10
    • /
    • 2007
  • Classification of hyperspectral images is challenging. A very high dimensional input space requires an exponentially large amount of data to adequately and reliably represent the classes in that space. In other words in order to obtain statistically reliable classification results, the number of necessary training samples increases exponentially as the number of spectral bands increases. However, in many situations, acquisition of the large number of training samples for these high-dimensional datasets may not be so easy. This problem can be overcome by using multiple classifiers. In this paper we compared the effectiveness of two approaches for creating multiple classifiers, feature selection and feature extraction. The methods are based on generating multiple feature subsets by running feature selection or feature extraction algorithm several times, each time for discrimination of one of the classes from the rest. A maximum likelihood classifier is applied on each of the obtained feature subsets and finally a combination scheme was used to combine the outputs of individual classifiers. Experimental results show the effectiveness of feature extraction algorithm for generating multiple classifiers.

  • PDF

Analysis of vegetation change in Taehwa River basin using drone hyperspectral image and multiple vegetation indices (드론 초분광 영상과 다중 식생지수를 활용한 태화강 유역 식생변화 분석)

  • Kim, Yong-Suk
    • Journal of the Korean Society of Environmental Restoration Technology
    • /
    • v.24 no.1
    • /
    • pp.97-110
    • /
    • 2021
  • Vegetation index information is an important figure that is used in many fields such as landscape architecture, urban planning, and environment. Vegetation may vary slightly in vegetation vitality depending on photosynthesis and chlorophyll content. In this study, a range of vegetation worth preserving in the Taehwa River water system was determined, and hyperspectral images of drones were acquired (August, October), and the results were presented through DVI(Normalized Defference Vegetation Index), EVI(Enhanced Vegetation Index), PRI(Photochemical Reflectance Index), ARI (Anthocyanin Reflectance Index) index analysis. In addition, field spectral data and VRS-GPS(Virtual Reference System-GPS) surveys were performed to ensure the quality and location accuracy of the spectral band. As a result of the analysis, NDVI and EVI showed low vegetation vitality in October, -0.165 and -0.085, respectively, and PRI and ARI increased to 0.011 and 7.588 in October, respectively. For general vegetation vitality, it was suggested that NDVI and EVI analysis were effectively performed, and PRI and ARI were thought to be effective in analyzing detailed characteristics of plants by spectral band. It is expected that it can be widely used for park design and landscape information modeling by using drone image information construction and vegetation information.

Evaluation for applicability of river depth measurement method depending on vegetation effect using drone-based spatial-temporal hyperspectral image (드론기반 시공간 초분광영상을 활용한 식생유무에 따른 하천 수심산정 기법 적용성 검토)

  • Gwon, Yeonghwa;Kim, Dongsu;You, Hojun
    • Journal of Korea Water Resources Association
    • /
    • v.56 no.4
    • /
    • pp.235-243
    • /
    • 2023
  • Due to the revision of the River Act and the enactment of the Act on the Investigation, Planning, and Management of Water Resources, a regular bed change survey has become mandatory and a system is being prepared such that local governments can manage water resources in a planned manner. Since the topography of a bed cannot be measured directly, it is indirectly measured via contact-type depth measurements such as level survey or using an echo sounder, which features a low spatial resolution and does not allow continuous surveying owing to constraints in data acquisition. Therefore, a depth measurement method using remote sensing-LiDAR or hyperspectral imaging-has recently been developed, which allows a wider area survey than the contact-type method as it acquires hyperspectral images from a lightweight hyperspectral sensor mounted on a frequently operating drone and by applying the optimal bandwidth ratio search algorithm to estimate the depth. In the existing hyperspectral remote sensing technique, specific physical quantities are analyzed after matching the hyperspectral image acquired by the drone's path to the image of a surface unit. Previous studies focus primarily on the application of this technology to measure the bathymetry of sandy rivers, whereas bed materials are rarely evaluated. In this study, the existing hyperspectral image-based water depth estimation technique is applied to rivers with vegetation, whereas spatio-temporal hyperspectral imaging and cross-sectional hyperspectral imaging are performed for two cases in the same area before and after vegetation is removed. The result shows that the water depth estimation in the absence of vegetation is more accurate, and in the presence of vegetation, the water depth is estimated by recognizing the height of vegetation as the bottom. In addition, highly accurate water depth estimation is achieved not only in conventional cross-sectional hyperspectral imaging, but also in spatio-temporal hyperspectral imaging. As such, the possibility of monitoring bed fluctuations (water depth fluctuation) using spatio-temporal hyperspectral imaging is confirmed.

Field and remote acquisition of hyperspectral information for classification of riverside area materials (현장 및 원격 초분광 정보 계측을 통한 하천 수변공간 재료 구분)

  • Shin, Jaehyun;Seong, Hoje;Rhee, Dong Sop
    • Journal of Korea Water Resources Association
    • /
    • v.54 no.12
    • /
    • pp.1265-1274
    • /
    • 2021
  • The analysis of hyperspectral characteristics of materials near the South Han River has been conducted using riverside area measurements by drone installed hyperspectral sensors. Each spectrum reflectance of the riverside materials were compared and analyzed which were consisted of grass, concrete, soil, etc. To verify the drone installed hyperspectral measurements, a ground spectrometer was deployed for field measurements and comparisons for the materials. The comparison results showed that the riverside materials had their unique hyperspectral band characteristics, and the field measurements were similar to the remote sensing data. For the classification of the riverside area, the K-means clustering method and SVM classification method were utilized. The supervised SVM method showed accurate classification of the riverside area than the unsupervised K-means method. Using classification and clustering methods, the inherent spectral characteristic for each material was found to classify the riverside materials of hyperspectral images from drones.

THE MODIFIED UNSUPERVISED SPECTRAL ANGLE CLASSIFICATION (MUSAC) OF HYPERION, HYPERION-FLASSH AND ETM+ DATA USING UNIT VECTOR

  • Kim, Dae-Sung;Kim, Yong-Il
    • Proceedings of the KSRS Conference
    • /
    • 2005.10a
    • /
    • pp.134-137
    • /
    • 2005
  • Unsupervised spectral angle classification (USAC) is the algorithm that can extract ground object information with the minimum 'Spectral Angle' operation on behalf of 'Spectral Euclidian Distance' in the clustering process. In this study, our algorithm uses the unit vector instead of the spectral distance to compute the mean of cluster in the unsupervised classification. The proposed algorithm (MUSAC) is applied to the Hyperion and ETM+ data and the results are compared with K-Meails and former USAC algorithm (FUSAC). USAC is capable of clearly classifying water and dark forest area and produces more accurate results than K-Means. Atmospheric correction for more accurate results was adapted on the Hyperion data (Hyperion-FLAASH) but the results did not have any effect on the accuracy. Thus we anticipate that the 'Spectral Angle' can be one of the most accurate classifiers of not only multispectral images but also hyperspectral images. Furthermore the cluster unit vector can be an efficient technique for determination of each cluster mean in the USAC.

  • PDF

A Study on the Unsupervised Classification of Hyperion and ETM+ Data Using Spectral Angle and Unit Vector

  • Kim, Dae-Sung;Kim, Yong-Il;Yu, Ki-Yun
    • Korean Journal of Geomatics
    • /
    • v.5 no.1
    • /
    • pp.27-34
    • /
    • 2005
  • Unsupervised classification is an important area of research in image processing because supervised classification has the disadvantages such as long task-training time and high cost and low objectivity in training information. This paper focuses on unsupervised classification, which can extract ground object information with the minimum 'Spectral Angle Distance' operation on be behalf of 'Spectral Euclidian Distance' in the clustering process. Unlike previous studies, our algorithm uses the unit vector, not the spectral distance, to compute the cluster mean, and the Single-Pass algorithm automatically determines the seed points. Atmospheric correction for more accurate results was adapted on the Hyperion data and the results were analyzed. We applied the algorithm to the Hyperion and ETM+ data and compared the results with K-Means and the former USAM algorithm. From the result, USAM classified the water and dark forest area well and gave more accurate results than K-Means, so we believe that the 'Spectral Angle' can be one of the most accurate classifiers of not only multispectral images but hyperspectral images. And also the unit vector can be an efficient technique for characterizing the Remote Sensing data.

  • PDF