• 제목/요약/키워드: Hyperpolarization

검색결과 104건 처리시간 0.02초

정자운동 개시 기구 (Mechanisms for the Initiation of Sperm Motility)

  • 고강희;강경호;장영진
    • 한국발생생물학회지:발생과생식
    • /
    • 제7권2호
    • /
    • pp.81-88
    • /
    • 2003
  • 정자의 운동개시는 수정시에 정자와 난자가 만나기 위한 전제조건이다. 동물의 정자는 CAMP와Ca2'의 조절기구에 의해서 정자의 운동개시가 일어난다. 정자운동 활성 및 개시를 위한 세포 신호전달기구는 멍게류와 연어과 어류에서 많은 연구가 이루어져 왔다. 멍게류의 경우, 난에서 분비되는 정자 활성 및 유인물질(sperm-activating and -attracting factor)은 정자 활성 및 난으로의 유인을 위하여 외부의 $Ca^{2+}$을 요구한다. 한편 연어과 어류의 정자에서는 Cyclic AMP 의존형의 단백질 인산화가 정자 운동개시 기구에 관여한다. 방정된 정자 주위의 $K^{+}$ 농도의 감소는 특정한 $K^{+}$ channel 및 dihydropyridine 감수성의 L-/T- type $Ca^{2+}$ channel을 통한 $K^{+}$ 유출과 $Ca^{2+}$ 유입에 의해 세포막의 과분극과 세포내 $Ca^{2+}$ 이온의 농도증가를 가져온다. 세포막의 과분극에 의해서 합성된 cyclic AMP는 정자 운동개시의 주요기구인 cyclic AMP의존형의 단백질 인산화를 유도한다.

  • PDF

DAMGO modulates two-pore domain K+ channels in the substantia gelatinosa neurons of rat spinal cord

  • Cho, Pyung Sun;Lee, Han Kyu;Lee, Sang Hoon;Im, Jay Zoon;Jung, Sung Jun
    • The Korean Journal of Physiology and Pharmacology
    • /
    • 제20권5호
    • /
    • pp.525-531
    • /
    • 2016
  • The analgesic mechanism of opioids is known to decrease the excitability of substantia gelatinosa (SG) neurons receiving the synaptic inputs from primary nociceptive afferent fiber by increasing inwardly rectifying $K^+$ current. In this study, we examined whether a ${\mu}$-opioid agonist, [D-Ala2,N-Me-Phe4, Gly5-ol]-enkephalin (DAMGO), affects the two-pore domain $K^+$ channel (K2P) current in rat SG neurons using a slice whole-cell patch clamp technique. Also we confirmed which subtypes of K2P channels were associated with DAMGO-induced currents, measuring the expression of K2P channel in whole spinal cord and SG region. DAMGO caused a robust hyperpolarization and outward current in the SG neurons, which developed almost instantaneously and did not show any time-dependent inactivation. Half of the SG neurons exhibited a linear I~V relationship of the DAMGO-induced current, whereas rest of the neurons displayed inward rectification. In SG neurons with a linear I~V relationship of DAMGO-induced current, the reversal potential was close to the $K^+$ equilibrium potentials. The mRNA expression of TWIK (tandem of pore domains in a weak inwardly rectifying $K^+$ channel) related acid-sensitive $K^+$ channel (TASK) 1 and 3 was found in the SG region and a low pH (6.4) significantly blocked the DAMGO-induced $K^+$ current. Taken together, the DAMGO-induced hyperpolarization at resting membrane potential and subsequent decrease in excitability of SG neurons can be carried by the two-pore domain $K^+$ channel (TASK1 and 3) in addition to inwardly rectifying $K^+$ channel.

Quercetin-induced Growth Inhibition in Human Bladder Cancer Cells Is Associated with an Increase in $Ca^{2+}$-activated $K^+$ Channels

  • Kim, Yang-Mi;Kim, Wun-Jae;Cha, Eun-Jong
    • The Korean Journal of Physiology and Pharmacology
    • /
    • 제15권5호
    • /
    • pp.279-283
    • /
    • 2011
  • Quercetin (3,3',4',5,7-pentahydroxyflavone) is an attractive therapeutic flavonoid for cancer treatment because of its beneficial properties including apoptotic, antioxidant, and antiproliferative effects on cancer cells. However, the exact mechanism of action of quercetin on ion channel modulation is poorly understood in bladder cancer 253J cells. In this study, we demonstrated that large conductance $Ca^{2+}$-activated $K^+$ ($BK_{Ca}$) or MaxiK channels were functionally expressed in 253J cells, and quercetin increased $BK_{Ca}$ current in a concentration dependent and reversible manner using a whole cell patch configuration. The half maximal activation concentration ($IC_{50}$) of quercetin was $45.5{\pm}7.2{\mu}m$. The quercetin-evoked $BK_{Ca}$ current was inhibited by tetraethylammonium (TEA; 5 mM) a non-specific $BK_{Ca}$ blocker and iberiotoxin (IBX; 100 nM) a $BK_{Ca}$-specific blocker. Quercetin-induced membrane hyperpolarization was measured by fluorescence-activated cell sorting (FACS) with voltage sensitive dye, bis (1,3-dibutylbarbituric acid) trimethine oxonol ($DiBAC_4$2(3); 100 nM). Quercetin-evoked hyperpolarization was prevented by TEA. Quercetin produced an antiproliferative effect ($30.3{\pm}13.5%$) which was recovered to $53.3{\pm}10.5%$ and $72.9{\pm}3.7%$ by TEA and IBX, respectively. Taken together our results indicate that activation of $BK_{Ca}$ channels may be considered an important target related to the action of quercetin on human bladder cancer cells.

기공 메커니즘에 대한 CO2의 역할은 무엇인가? (What are the Possible Roles of CO2 on Stomatal Mechanism?)

  • 이준상
    • 한국환경생태학회지
    • /
    • 제30권1호
    • /
    • pp.130-134
    • /
    • 2016
  • $CO_2$는 기공 메커니즘에 어떤 영향을 주는가? 햇빛에 의해 유도된 기공 열림에서 독립적인 $CO_2$의 효과를 분리해서 본다는 것은 어려운 일이기 때문에, $CO_2$에 의한 기공 열림 메커니즘은 아직 명확하게 밝혀지지 않은 실정이다. 기공은 또한 $CO_2$ 농도에 따라 다르게 반응 할 수 있다. 기공 열림과 닫힘의 식물의 생체적인 리듬도 관여하므로, $CO_2$의 반응에 대한 해석은 많은 요소들을 고려해야 한다. 세포간극 내강 ($C_i$)의 감소된 $CO_2$에서는 기공을 열린다는 것이 일반적으로 정해진 사실이다. 기공 열림의 정도를 결정하는 것은 삼투 물질이고, $CO_2$가 삼투 물질의 수송에 영향을 준다고 가정하는 것이 $CO_2$가 기공 메커니즘에 영향을 주는 유일한 방법이다. 그러나 $CO_2$가 어떻게 공변세포 내의 삼투물질 농도에 영향을 주는지 그 메커니즘은 불분명하다. 지금까지, $CO_2$는 공변세포의 삼투퍼텐셜을 증가시키는 이온과 유기물이 어떻게 공변세포 막을 통한 수송 메커니즘이 이루어지는지는 알려진 것이 없다. 따라서 이 연구에서는 $CO_2$에 의한 삼투물질들의 공변세포 막 투과성에 대해 초점을 두었다. 잎을 일정한 농도의 $CO_2$에 노출할 때 $CO_2$-관련된 반응들이 나타난다. 빛에 의한 기공 열림의 가설은 $K^+$, $Cl^-$, 슈크로스 그리고 말산$^{2-}$를 포함하는 공변세포 내 삼투물질 농도의 증가에 있다. $CO_2$$H^+$를 세포 밖으로 방출하는 것을 나타내는 막의 과분극 (hyperpolarization)을 유도했다는 보고가 있다. 이는 $CO_2$가 막 투과성에 관련된 첫 번째 증거이다. 온전한 잎에서 $CO_2$는 빛에 의해 유도된 막의 과분극보다 3~4 배까지 공변세포의 막 과분극을 유도했다. 이러한 결과들은 $CO_2$가 막 투과성에 영향을 주는 인지질 이중층과 수송단백질의 물리적인 특성에 변화를 초래한다는 것을 의미한다.

Effect of Dopamine on a Voltage-Gated Potassium Channel in a Jellyfish Motor Neuron

  • Chung, Jun-Mo;Spencer, Andrew N.
    • BMB Reports
    • /
    • 제29권2호
    • /
    • pp.151-155
    • /
    • 1996
  • To swimming motor neurons (SMNs) of Polyorchis penicillatus, a hydrozoan medusae, dopamine (DA) acts as an inhibitory neurotransmitter by hyperpolarizing its membrane potential and decreasing its firing rate as well. Such an inhibitory action of DA is caused by an increased permeability to potassium (K) ions. To investigate whether voltage-gated K channels are directly responsible for the membrane hyperpolarization induced by DA, we employed whole-cell voltage clamp configuration. One ${\mu}M$ DA applied to SMNs increased the peak and rear values of voltage-gated K currents by 37 and 54%, respectively, in a reversible manner. Combined with subtraction analysis, this result suggests that the outflux of K ions by DA in SMNs occurs mainly through rectifier-like K channels.

  • PDF

Solid State Dynamic Nuclear Polarization of 1H Nuclear Spins at 0.3 T and 4.2 K

  • Shim, Jeong Hyun
    • 한국자기공명학회논문지
    • /
    • 제21권4호
    • /
    • pp.114-118
    • /
    • 2017
  • Here, I report solid state Dynamic Nuclear Polarization (DNP) of $^1H$ nuclear spins at 0.3 T and 4.2 K. The DNP polarizer was developed based on a commercial X-band Electron Spin Resonance (ESR) modified for DNP, in combination with a NMR console and a liquid-Helium cryostat. By detuning magnetic field, DNP spectrum was measured to find the optimal condition. At +3 mT detuned from on-resonance field, $^1H$ NMR signal of 60:40 glycerol/water frozen solution doped with 20 mM perdeuterated-Tempone was amplified 43 times. The $^1H$ spin polarization obtained at 4.2 K is over 3100 times higher than that at 300 K. The width of the DNP spectrum, which is five times broader than ESR spectrum, is inconsistent with solid effect or thermal mixing, and presumably suggests a different DNP mechanism.

Effects of Nitric Oxide on the Neuronal Activity of Rat Cerebellar Purkinje Neurons

  • ;;박종성
    • 대한의생명과학회지
    • /
    • 제16권4호
    • /
    • pp.259-264
    • /
    • 2010
  • This study was designed to investigate the effects of nitric oxide on the neuronal activity of rat cerebellar Purkinje cells. Sprague-Dawley rats aged 14 to 16 days were decapitated under ether anesthesia. After treatment with pronase and thermolysin, the dissociated Purkinje cells were transferred into a chamber on an inverted microscope. Spontaneous action potentials and potassium current were recorded by standard patch-clamp techniques under current and voltage-clamp modes respectively. 15 Purkinje cells revealed excitatory responses to $20\;{\mu}M$ of sodium nitroprusside (SNP) and 4 neurons (20%) did not respond to SNP. Whole potassium currents of Purkinje cells were decreased by SNP (n=10). Whole potassium currents of Purkinje cells were also decreased by L-arginine, substrate of nitric oxide (n=10). These experimental results suggest that nitric oxide increases the neuronal activity of Purkinje cells by altering the resting membrane potential and after hyperpolarization.

장평활근의 수축성에 대한 홍삼 Saponins의 효과 (Effect of Red Ginseng Saponins on Intestinal Contractility)

  • 신동호;오정이
    • Journal of Ginseng Research
    • /
    • 제22권3호
    • /
    • pp.200-205
    • /
    • 1998
  • Isolated rabbit jejunal segments were used to study the effects of ginseng total saponins (GTS) , protopanaxatriol saponins (PT) and protopanaxadiol saponins (PD) on intestinal contractility. GTS, PT and PD caused a dose-dependent decrease in intestinal spontaneous movements, and PT was the most efficacious of them. The effect of GTS, PT and PD were not blocked by pretreatment with phentolamine (10-6 M), yohimbine (10-6 M), d1-propranolol (10-6 M), naloxone(10-6∼10-5M), Nu-nitro-L-arginine methyl ester (10-4 M), methylene blue (10-5M), and N-ethylmaleimide (10-4 M). However, pretreatment with tetraethylammonium chloride (3-10 mM) antagonized the effect of GTS, PT and PD. Furthermore, 4-amlnopyridine (1 mM) also inhibited the effect of GTS, PT and PD. The results suggest that GTS, PT and PD inhibited the spontaneous movements in isolated rebait jejunum by causing hyperpolarization through an activation of K+ channels directly.

  • PDF

Induction of Oscillatory Firing Activity by TTX in Rat Cerebellar Purkinje Cells

  • Seo, Wha-Sook
    • The Korean Journal of Physiology
    • /
    • 제29권1호
    • /
    • pp.103-111
    • /
    • 1995
  • Intracellular recordings were obtained from Purkinje cells in rat cerebellar slices maintained in vitro. Adding tetrodotoxin to the superfusion solution produced a typical pattern of repetitive burst firing consisting of a cluster of action potentials followed by a long hyperpolarization. TTX-induced oscillatory activity was not due to modulation of membrane potential although underlying mechanisms for maintenance of oscillatory activity were influenced by membrane voltage. The mechanism of TTX-induced oscillation was not related to the presence or amplitude of $I_h$ and could still induce the oscillatory activity after blockade of $I_h$ by cesium. The result from an experiment in which QX-314 was injected intracellularly strongly suggested that TTX-induced oscillatory firing activity was due to blockade of post-synaptic $Na^{+}$ currents intrinsic to PCs.

  • PDF

Energy Status of Neurospora crassa Mutant nap in Relation to Accumulation of Carotenoids

  • Belozersk, Tatyana A.;Potapova, Tatyana V.;Isakova, Elena P.;Shurubor, Eugene I.;Savel'eva, Ludmila V.;Zvyagilskaya, Renata A.
    • Journal of Microbiology
    • /
    • 제41권1호
    • /
    • pp.41-45
    • /
    • 2003
  • N crassa mutant strain nap showed reduced growth rate, decreased electric membrane potential, and elevated intracellular ATP content in comparison to the wild type. Blue light induced a hyperpolarization of the membrane potential in both strains. The analysis of oxidative and phosphorylation activities of mitochondria isolated from the two strains has revealed that nap utilized more efficient oxidative pathways. The higher intracellular ATP content in the nap was presumably due to impaired transport systems of the plasma membrane, and to a lesser extent to the functioning of the fully competent respiratory chain. The excess ATP possibly accounts for carotenoid accumulation in the mutant.