• Title/Summary/Keyword: Hyperelastic Material

Search Result 64, Processing Time 0.03 seconds

Design, simulation and experimental analysis of fiber-reinforced silicone actuators

  • Sina Esmalipour;Masoud Ajri;Mehrdad Ekhtiari
    • Structural Engineering and Mechanics
    • /
    • v.91 no.2
    • /
    • pp.211-225
    • /
    • 2024
  • Soft bending actuators have gained significant interest in robotic applications due to their compliance and lightweight nature. Their compliance allows for safer and more natural interactions with humans or other objects, reducing the risk of injury or damage. However, the nonlinear behaviour of soft actuators presents challenges in accurately predicting their bending motion and force exertion. In this research, a new comprehensive study has been conducted by employing a developed 3D finite element model (FEM) to investigate the effect of geometrical and material parameters on the bending behaviour of a soft pneumatic actuator reinforced with Kevlar fibres. A series of experiments are designed to validate the FE model, and the FE model investigates the improvement of actuator performance. The material used for fabricating the actuator is RTV-2 silicone rubber. In this study, the Cauchy stress was expanded for hyperelastic models and the best model to express the stress-strain behaviour based on ASTM D412 Type C tensile test for this material has been obtained. The results show that the greatest bending angle was achieved for the semi-elliptical actuator made of RTV2 material with a pitch of 1.5 mm and second layer thickness of 1 mm. In comparison, the maximum response force was obtained for the semi-elliptical actuator made of RTV2 material with a pitch of 6 mm and a second layer thickness of 2 mm. Additionally, this research opens up new possibilities for development of safer and more efficient robotic systems that can interact seamlessly with humans and their environment.

A Study on the sealing Characteristic of Automobile Waterproof Connector (자동차용 방수커넥터의 밀봉특성에 관한 연구)

  • Ko, Young-Bae;Park, Hyung-Pil;Lee, Jeong-Won;Cha, Baeg-Soon
    • Journal of the Korea Academia-Industrial cooperation Society
    • /
    • v.15 no.4
    • /
    • pp.1859-1864
    • /
    • 2014
  • Liquid silicone rubber(LSR) has been applied to various products such as electronic devices owing to its excellent thermal and chemical resistance. Hyperelastic materials, however, have properties distinguished from general metal materials. Hyperelastic materials show elastic behaviors in the range of large deformation in which load has the nonlinear relation with deformation. In addition, they have characteristics of nonlinearity, incompressibility, in large scale. On account of such characteristics, there are many difficulties in design and production using these materials. In this study, the load-deformation relation obtained from tension and compression tests was applied to finite element analysis in order to design waterproof connectors for automobiles. Furthermore, the effectiveness of the finite element analysis was confirmed by comparing the results of analysis with those of performance tests.

Effect of Bladder Wall Thickness Through Change of Bladder Volume and Material Properties on Detrusor activity Study (체적의 변화를 통한 방광벽 두께와 기계적 재료상수 변화가 배뇨근 활동에 미치는 영향)

  • Jun, Su-Min;Lee, Moon-Kyu;Choi, Bum-Kyoo
    • Journal of the Korean Society for Precision Engineering
    • /
    • v.29 no.5
    • /
    • pp.584-590
    • /
    • 2012
  • The structural and functional disorder of a detrusor induces a bladder hypertrophy and degenerates a bladder muscle gradually by preventing normal urination. Thus, the thickness of the bladder wall has been increased in proportion to the degree of bladder outlet obstruction. In this study, the mechanical characteristics of the detrusor is analyzed for the physical properties and the thickness changes of the bladder muscle using a mathematically analytic method. In order to obtain the mechanical property of the bladder muscle, the tensile test of porcine bladder tissue is performed because its property is similar to that of human. The result of tensile test is applied to the mathematically model as Mooney Rivlin coefficients which represent the hyperelastic material. The model of the bladder is defined as the spherical shape with the initial volume of 50ml. The principal stress and strain according to the thickness are analyzed. Also, computer simulations for three types of the material property for the model of the bladder are performed based on the fact that the stiffness of the bladder is weakened as the progress of the benign prostatic hyperplasia. As a result, the principal stress is 341kPa at the initial thickness of 2.2mm, and is 249kPa at 6.5mm. As the bladder wall thickness increases, the principal stress decreases. The principal stress and strain decrease as the stiffness of the bladder decreases under the same thinkness.

Numerical and experimental investigation for monitoring and prediction of performance in the soft actuator

  • Azizkhani, Mohammadbagher;sangsefidi, Alireza;Kadkhodapour, Javad;Anaraki, Ali Pourkamali
    • Structural Engineering and Mechanics
    • /
    • v.77 no.2
    • /
    • pp.167-177
    • /
    • 2021
  • Due to various benefits such as unlimited degrees of freedom, environment adaptability, and safety for humans, engineers have used soft materials with hyperelastic behavior in various industrial, medical, rescue, and other sectors. One of the applications of these materials in the fabrication of bending soft actuators (SA) is that they have eliminated many problems in the actuators such as production cost, mechanical complexity, and design algorithm. However, SA has complexities, such as predicting and monitoring behavior despite the many benefits. The first part of this paper deals with the prediction of SA behavior through mathematical models such as Ogden and Darijani, and its comparison with the results of experiments. At first, by examining different geometric models, the cubic structure was selected as the optimal structure in the investigated models. This geometrical structure at the same pressure showed the most significant bending in the simulation. The simulation results were then compared with experimental, and the final gripper model was designed and manufactured using a 3D printer with silicone rubber as for the polymer part. This geometrical structure is capable of bending up to a 90-degree angle at 70 kPa in less than 2 seconds. The second section is dedicated to monitoring the bending behavior created by the strain sensors with different sensitivity and stretchability. In the fabrication of the sensors, silicon is used as a soft material with hyperelastic behavior and carbon fiber as a conductive material in the soft material substrate. The SA designed in this paper is capable of deforming up to 1000 cycles without changing its characteristics and capable of moving objects weigh up to 1200 g. This SA has the capability of being used in soft robots and artificial hand making for high-speed objects harvesting.

The Structural Design for Nonlinear Hyperelastic Materials Based on CFD (CFD 기반의 비선형 초탄성 재료의 구조 설계)

  • Jung Dae-Seok;Kim Ji-Young;Lee Jong-Moon;Park Young-Chul
    • Transactions of the Korean Society of Mechanical Engineers A
    • /
    • v.30 no.4 s.247
    • /
    • pp.379-386
    • /
    • 2006
  • The hyper-elastic material has been used gradually and its range was extended all over the industry. The performance prediction of hyper-elastic material was required not only experimental methods but also numerical methods. In this study, we presented the process how to use numerical method for hyper-elastic material and applied it to seat-ring of butterfly valve. The finite element analysis was executed to evaluate the mechanical characteristics of hyper-elastic material. And the optimum model considered conditions and features. According to that model, the load conditions were obtained by using CFD analysis.

A Study on Tensile Properties and Non-linear Behavior Analysis of Membrane for Stratospheric Airship Envelop (성층권 비행선용 막 재료의 인장 물성 측정 및 비선형 거동에 관한 연구)

  • Lee, Han-Geol;Roh, Jin-Ho;Lee, In;Kang, Wang-Gu;Yeom, Chan-Hong
    • Proceedings of the Korean Society For Composite Materials Conference
    • /
    • 2005.11a
    • /
    • pp.103-106
    • /
    • 2005
  • The material properties of membrane for stratospheric airship is experimentally investigated. Mechanical tensile properties of the membrane material at room, high and low temperature are measured using instron with thermal chamber. Experimentaly, material non-linearity is observed at room and high temperature. In order to simulate material non-linearity caused by the uniaxial extension curve of a woven fabric, the nonlinear hyperelastic problem is considered with finite clement program of ABAQS. Numerical results are compared with experimental results.

  • PDF

Hyperelastic Finite Element Formulation using Pressure Potential (압력포텐샬을 이용한 초탄성 유한요소 정식화)

  • Kim, Heon-Young;Kim, Ho;Kim, Joong-Jae
    • Transactions of the Korean Society of Mechanical Engineers A
    • /
    • v.26 no.12
    • /
    • pp.2492-2502
    • /
    • 2002
  • A rubber-like material model is generally characterized by hyperelasticity and formulated by a total stress-total strain relationship because the material shows nonlinear elastic behaviour under large deformation. In this study, a pressure potential obtained by a separately interpolated pressure is introduced to the non-linear finite element formulation incorporating with incompressible or almost incompressible condition of the material. The present formulation is somewhat different from the general formulation using the pressure computed in the displacement field. A non-linear finite element analysis program is developed for the plane strain and the axisymmetric contact problems of a rubber-like material. Various examples with rubber material are analyzed for its verification. The results about deformed shapes and stress distributions thought to be meaningful in comparison with a commercial program, MARC.

A Comparative Study of the Linear-elastic and Hyperelastic Models for Degradation of PLA Prepared using Fused Filament Fabrication (FFF 방식으로 제작된 PLA의 열화에 따른 선형탄성 및 초탄성 모델의 비교에 관한 연구)

  • Choi, Na-Yeon;Shin, Byoung-Chul;Zhang, Sung-Uk
    • Journal of the Korean Society of Manufacturing Process Engineers
    • /
    • v.19 no.3
    • /
    • pp.1-7
    • /
    • 2020
  • Fused filament fabrication (FFF) is a process extruding and stacking materials. PLA materials are one of the most frequently used materials for FFF method of 3D printing. Polylactic acid (PLA)-based materials are among the most widely used materials for FFF-based three-dimensional (3D) printing. PLA is an eco-friendly material made using starch extracted from corn, as opposed to plastic made using conventional petroleum resin; PLA-based materials are used in various fields, such as packaging, aerospace, and medicines. However, it is important to analyze the mechanical properties of theses materials, such as elastic strength, before using them as structural materials. In this study, the reliability of PLA-based materials is assessed through an analysis of the changes in the linear elasticity of these materials under thermal degradation by applying a hyperelastic analytical model.

Advanced Structural Silicone Glazing

  • Kimberlain, Jon;Carbary, Larry;Clift, Charles D.;Hutley, Peter
    • International Journal of High-Rise Buildings
    • /
    • v.2 no.4
    • /
    • pp.345-354
    • /
    • 2013
  • This paper presents an advanced engineering technique using finite element analysis to improve structural silicone glazing (SSG) design in high-performance curtain wall systems for building facade. High wind pressures often result in bulky SSG aluminum extrusion profile dimensions. Architectural desire for aesthetically slender curtain wall sight-lines and reduction in aluminum usage led to optimization of structural silicone bite geometry for improved stress distribution through use of finite element analysis of the hyperelastic silicone models. This advanced design technique compared to traditional SSG design highlights differences in stress distribution contours in the silicone sealant. Simplified structural engineering per the traditional SSG design method lacks accurate forecasting of material and stress optimization, as shown in the advanced analysis and design. Full scale physical specimens were tested to verify design capacity in addition to correlate physical test results with the theoretical simulation to provide confidence of the model. This design technique will introduce significant engineering advancement to the curtain wall industry and building facade.