Browse > Article
http://dx.doi.org/10.12989/sem.2021.77.2.167

Numerical and experimental investigation for monitoring and prediction of performance in the soft actuator  

Azizkhani, Mohammadbagher (Department of Mechanical Engineering, Shahid Rajaee Teacher Training University)
sangsefidi, Alireza (Department of Mechanical Engineering, Shahid Rajaee Teacher Training University)
Kadkhodapour, Javad (Department of Mechanical Engineering, Shahid Rajaee Teacher Training University)
Anaraki, Ali Pourkamali (Department of Mechanical Engineering, Shahid Rajaee Teacher Training University)
Publication Information
Structural Engineering and Mechanics / v.77, no.2, 2021 , pp. 167-177 More about this Journal
Abstract
Due to various benefits such as unlimited degrees of freedom, environment adaptability, and safety for humans, engineers have used soft materials with hyperelastic behavior in various industrial, medical, rescue, and other sectors. One of the applications of these materials in the fabrication of bending soft actuators (SA) is that they have eliminated many problems in the actuators such as production cost, mechanical complexity, and design algorithm. However, SA has complexities, such as predicting and monitoring behavior despite the many benefits. The first part of this paper deals with the prediction of SA behavior through mathematical models such as Ogden and Darijani, and its comparison with the results of experiments. At first, by examining different geometric models, the cubic structure was selected as the optimal structure in the investigated models. This geometrical structure at the same pressure showed the most significant bending in the simulation. The simulation results were then compared with experimental, and the final gripper model was designed and manufactured using a 3D printer with silicone rubber as for the polymer part. This geometrical structure is capable of bending up to a 90-degree angle at 70 kPa in less than 2 seconds. The second section is dedicated to monitoring the bending behavior created by the strain sensors with different sensitivity and stretchability. In the fabrication of the sensors, silicon is used as a soft material with hyperelastic behavior and carbon fiber as a conductive material in the soft material substrate. The SA designed in this paper is capable of deforming up to 1000 cycles without changing its characteristics and capable of moving objects weigh up to 1200 g. This SA has the capability of being used in soft robots and artificial hand making for high-speed objects harvesting.
Keywords
soft actuator; gripper; silicone rubber; bending behavior prediction; flexible strain sensors;
Citations & Related Records
연도 인용수 순위
  • Reference
1 Zhou, H., Zheng, S., Qu, C., Wang, D., Liu, C., Wang, Y., Fan, X., Xiao, W., I, Ho., Zhao, D., Chang, J., Chen, C. and Zhao, X. (2019), "Simple and environmentally friendly approach for preparing high- performance polyimide precursor hydrogel with fully aromatic structures for strain sensor", Eur. Polym. J., 114, 346-52. https://doi.org/10.1016/j.eurpolymj.2019.01.043.   DOI
2 Sang, Z., Ke, K. and Manas-Zloczower, I. (2019), "Effect of carbon nanotube morphology on properties in thermoplastic elastomer composites for strain sensors", Compos. Part A Appl. Sci. Manuf., 121, 207-212. https://doi.org/10.1016/j.compositesa.2019.03.007.   DOI
3 Alimirzaei, S., Mohammadimehr, M. and Tounsi, A. (2019), "Nonlinear analysis of viscoelastic micro-composite beam with geometrical imperfection using FEM: MSGT electro-magnetoelastic bending, buckling and vibration solutions", Struct. Eng. Mech., 71(5), 485-502. https://doi.org/10.12989/sem.2019.71.5.485.   DOI
4 Amjadi, M., Kyung, K.U., Park, I. and Sitti, M. (2016), "Stretchable, Skin-Mountable, and Wearable Strain Sensors and Their Potential Applications: A Review", Adv. Funct. Mater., 26(11), 1678-1698. https://doi.org/10.1002/adfm.201504755.   DOI
5 Amjadi, M., Yoon, Y. J., and Park, I. (2015), "Ultra-Stretchable and Skin-Mountable Strain Sensors Using Carbon Nanotubes-Ecoflex Nanocomposites", Nanotechnology., 26(37), 375501. https://doi.org/10.1088/0957-4484/26/37/375501.   DOI
6 Anani, Y., and Rahimi, G.H., (2015), "Stress Analysis of Thick Pressure Vessel Composed of Functionally Graded Incompressible Hyperelastic Materials", Int. J. Mech. Sci., 104, 1-7. https://doi.org/10.1016/j.ijmecsci.2015.09.012.   DOI
7 Antonelli, M. G., Beomonte Zobel, P., Durante, F. and Raparelli, T. (2019), "Additive Manufacturing Applications on Flexible Actuators for Active Orthoses and Medical Devices", J. Healthc. Eng., 2019. https://doi.org/10.1155/2019/5659801.   DOI
8 Hashiguchi, K. (2019), "Multiplicative Hyperelastic-Based Plasticity for Finite Elastoplastic Deformation/Sliding: A Comprehensive Review", Arch. Comput. Methods Eng., 26. https://doi.org/10.1007/s11831-018-9256-5.   DOI
9 Ho, M. D., Ling, Y., Yap, L. W., Wang, Y., Dong, D., Zhao, Y. and Cheng, W. (2017), "Percolating Network of Ultrathin Gold Nanowires and Silver Nanowires toward 'Invisible' Wearable Sensors for Detecting Emotional Expression and Apexcardiogram", Adv. Funct. Mater., 27(25), 1-9. https://doi.org/10.1002/adfm.201700845.   DOI
10 Homberg, B. S., Katzschmann, R. K., Dogar, M. R. and Rus, D. (2019), "Robust Proprioceptive Grasping with a Soft Robot Hand", Auton Robots., 43(3), 681-96. https://doi.org/10.1007/s10514-018-9754-1.   DOI
11 Huang, J., Li, D., Zhao, M., Mensah, A., Lv, P., Tian, X., Huang, F., Ke, H. and Wei, Q. (2019), "Highly sensitive and stretchable cnt-bridged agnp strain sensor based on TPU electrospun membrane for human motion detection", Adv. Electron. Mater., 5(6), 1-8. https://doi.org/10.1002/aelm.201900241.   DOI
12 Hussain, M., Naeem, M.N., Khan, M.S., and Tounsi, A. (2020), "Computer-aided approach for modelling of FG cylindrical shell sandwich with ring supports", Comp. Concrete, 25(5), 411-425. https://doi.org/10.12989/cac.2020.25.5.411   DOI
13 Ju, M., Park, K., Moon, D., Park, C., and Sim, J. (2018), "On strain measurement of smart GFRP bars with built-in fiber Bragg grating sensor", Struct. Eng. Mech., 65(2), 155-162. https://doi.org/10.12989/sem.2018.65.2.155   DOI
14 Tounsi, A., Al-Dulaijan, S. U., Al-Osta, M. A., Chikh, A., Al-Zahrani, M. M., Sharif, A. and Tounsi, A. (2020), "A four variable trigonometric integral plate theory for hygro-thermomechanical bending analysis of AFG ceramic-metal plates resting on a two-parameter elastic foundation", Steel Comp. Struct., 34(4), 511. https://doi.org/10.12989/scs.2020.34.4.511   DOI
15 Junius Santoso, Erik H. Skorina, Marco Salerno, Sebastien de Rivaz, Jamie Paik, and Cagdas D. Onal. (2019), "Single Chamber Multiple Degree-of-Freedom Soft 11 12 Pneumatic Actuator Enabled by Adjustable Stiffness 13 Layers", Smart Mater. Struct., 28(3), 035012. https://doi.org/10.1088/1361-665X/aaf9c0   DOI
16 Shepherd, R.F., Ilievski, F., Choi, W., Morin, S.A., Stokes, A.A., Mazzeo, A.D., Chen, X., Wang, M. and Whitesides, G.W. (2011), "Multigait soft robot", Proc. Natl. Acad. Sci. U.S.A., 108(51), 20400-20403. https://doi.org/10.1073/pnas.1116564108.   DOI
17 Shintake, J., Sonar, H., Piskarev, E., Paik, J. and Floreano, D. (2017), "Soft pneumatic gelatin actuator for edible robotics", IEEE/RSJ Int. Conf. Intell. Robot. Syst., 2017, 3-8. http://arxiv.org/abs/1703.01423.
18 Steck, D., Qu, J., Kordmahale, S. B., Tscharnuter, D., Muliana, A. and Kameoka, J. (2019), "Mechanical responses of ecoflex silicone rubber: compressible and incompressible behaviors", J. Appl. Polym. Sci., 136(5), 1-11. https://doi.org/10.1002/app.47025.   DOI
19 Sun, T., Chen, Y., Han, T., Jiao, C., Lian, B. and Song, Y. (2020), "A soft gripper with variable stiffness inspired by pangolin scales, toothed pneumatic actuator and autonomous controller", Robot. Comput. Integr. Manuf., 61. https://doi.org/10.1016/j.rcim.2019.101848.   DOI
20 Taherkhani, B., Azizkhani, M.B., Kadkhodapour, J., Anaraki, A.P. and Rastgordani, S. (2020), "Highly Sensitive, Piezoresistive, Silicone/Carbon Fiber-Based Auxetic Sensor for Low Strain Values Bahman", Sensors Actuators A. Phys., 111939. https://doi.org/10.1016/j.sna.2020.111939.   DOI
21 Trivedi, D., Dienno, D. and Rahn, C. D. (2008), "Optimal, ModelBased Design of Soft Robotic Manipulators", J. Mech. Des. Trans. ASME., 130(9), 0914021-29. https://doi.org/10.1115/1.2943300.   DOI
22 Azizkhani, M.B., Rastgordani, S., Anaraki, A.P., Kadkhodapour, J. and Hadavand, B.S. (2019), "Highly Sensitive and Stretchable Strain Sensors Based on Chopped Carbon Fibers Sandwiched between Silicone Rubber Layers for Human Motion Detections", J. Compos. Mater., 54(3), 423-434. https://doi.org/10.1177/0021998319855758.   DOI
23 Arani, A.G., Bidgoli, A.H., Ravandi, A.K., Roudbari, M.A., Amir, S., and Azizkhani, M.B. (2013), "Induced nonlocal electric wave propagation of boron nitride nanotubes", J. Mech. Sci. Tech., 27(10), 3063-3071. https://doi.org/10.1007/s12206-013-0705-7   DOI
24 Azami, O., Morisaki, D., Miyazaki, T., Kanno, T. and Kawashima, K. (2019), "Development of the Extension Type Pneumatic Soft Actuator with Built-in Displacement Sensor", Sensors Actuators, A Phys., 300, 111623. https://doi.org/10.1016/j.sna.2019.111623.   DOI
25 Aziz, Shahid, Kyung-chae Jung and Seung-hwan Chang (2019), "Stretchable Strain Sensor Based on a Nanocomposite of Zinc Stannate Nanocubes and Silver Nanowires", Compos. Struct., 224, 111005. https://doi.org/10.1016/j.compstruct.2019.111005.   DOI
26 Song, K., Kim, S. and Cha, Y. (2020), "Soft electromagnetic actuator for assembly robots", Smart Mater. Struct., https://doi.org/10.1088/1361-6463/aad7de.   DOI
27 Azizkhani, M.B., Kadkhodapour, J., Anaraki, A.P. and Shirkavand Hadavand, B. (2020), "Study of body movement monitoring utilizing nano-composite strain sensors containing carbon nanotubes and silicone rubber", Steel comp. struct., 35(6), 779-788. https://doi.org/10.12989/scs.2020.35.6.779.   DOI
28 Azizkhani, M.B., Kadkhodapour, J., Rastgordani, S., Anaraki, A. P. and Hadavand, B.S. (2019), "Highly Sensitive, Stretchable Chopped Carbon Fiber/Silicon Rubber Based Sensors for Human Joint Motion Detection", Fibers Polym., 20(1), 35-44. https://doi.org/10.1007/s12221-019-8662-0.   DOI
29 Balubaid, M., Tounsi, A., Dakhel, B. and Mahmoud, S.R., (2019), "Free vibration investigation of FG nanoscale plate using nonlocal two variables integral refined plate theory", Comp. Concrete, 24(6), 579-586. https://doi.org/10.12989/cac.2019.24.6.579   DOI
30 Kaddari, M., Kaci, A., Bousahla, A.A., Tounsi, A., Bourada, F., Tounsi, A., Bedia, E.A., and Al-Osta, M.A., (2020), "A study on the structural behavior of functionally graded porous plates on elastic foundation using a new quasi-3D model: Bending and free vibration analysis", Comp. Concrete, 25(1), 37-57. https://doi.org/10.12989/cac.2020.25.1.037   DOI
31 Kaloop, M.R., Hwang, W.S., Elbeltagi, E., Beshr, A. and Hu, J.W., (2019), "Evaluation of Dorim-Goh bridge using ambient trucks through short-period structural health monitoring system", Struct. Eng. Mech., 69(3), 347-359. https://doi.org/10.12989/sem.2019.69.3.347   DOI
32 Karami, B., Janghorban, M., and Tounsi, A., (2019), "Galerkin's approach for buckling analysis of functionally graded anisotropic nanoplates/different boundary conditions", Eng. Comp, 35(4), 1297-1316. https://doi.org/10.1007/s00366-018-0664-9   DOI
33 Khiloun, M., Bousahla, A.A., Kaci, A., Bessaim, A., Tounsi, A. and Mahmoud, S.R. (2019), "Analytical modeling of bending and vibration of thick advanced composite plates using a fourvariable quasi 3D HSDT", Eng. Comp, 36, 1-15. https://doi.org/10.1007/s00366-019-00732-1   DOI
34 Shariati, A., Ghabussi, A., Habibi, M., Safarpour, H., Safarpour, M., Tounsi, A. and Safa, M. (2020), "Extremely large oscillation and nonlinear frequency of a multi-scale hybrid disk resting on nonlinear elastic foundation", Thin-Walled Struct., 154, 106840. https://doi.org/10.1016/j.tws.2020.106840.   DOI
35 Koziol, M., Toron, B., Szperlich, P. and Jesionek, M. (2019), "Fabrication of a Piezoelectric Strain Sensor Based on SbSI Nanowires as a Structural Element of a FRP Laminate", Comp. Part B Eng., 157, 58-65. https://doi.org/10.1016/j.compositesb.2018.08.105.   DOI
36 Kumpika, T.E., Kantarak, A. Sriboonruang, W. Tippo, S.W., Thongpan, W. and Pooseekheaw, P. (2020), "Stretchable and Compressible Strain Sensors for Gait Monitoring Constructed Using Carbon Nanotube / Graphene Composite Stretchable and Compressible Strain Sensors for Gait Monitoring Constructed Using Carbon Nanotube / Graphene Composite", Mat. Res. Exp., 7(3), 035006. https://doi.org/10.1088/2053-1591/ab748d   DOI
37 Wang, L., Chen, Y., Lin, L., Wang, H., Huang, X., Xue, H. and Gao, J. (2019), "Highly Stretchable, Anti-Corrosive and Wearable Strain Sensors Based on the PDMS / CNTs Decorated Elastomer Nano Fiber Composite", Chem. Eng. J., 362, 89-98. https://doi.org/10.1016/j.cej.2019.01.014.   DOI
38 Wang, Z., Zhang, Q., Yue, Y., Xu, J., Xu, W., Sun, X., Chen, Y., Jiang, J. and Liu, Y. (2019), "3D Printed Graphene/Polydimethylsiloxane Composite for Stretchable Strain Sensor with Tunable Sensitivity", Nanotechnology., 30(34), 345501. https://doi.org/10.1088/1361-6528/ab1287   DOI
39 Wurdemann, H.A. (2018), "Directly printable flexible strain sensors for bending and contact feedback of soft actuators", Frontiers Robotics AI., 5, 1-14. https://doi.org/10.3389/frobt.2018.00002.   DOI
40 Savino, P., Gherlone, M., and Tondolo, F., (2019), "Shape sensing with inverse finite element method for slender structures", Struct. Eng. Mech., 72(2), 217-227. https://doi.org/10.12989/sem.2019.72.2.217   DOI
41 Mohamed, M. H., Wagdy, S. H., Atalla, M. A., Rehan Youssef, A. and Maged, S. A. (2020), "A Proposed Soft Pneumatic Actuator Control Based on Angle Estimation from Data-Driven Model", Proc. Inst. Mech. Eng. Part H J. Eng. Med. https://doi.org/10.1177/0954411920911277.   DOI
42 Montazerian, H., Rashidi, A., Dalili, A., Najjaran, H., Milani, A. S. and Hoorfar, M. (2019), "Graphene-Coated spandex sensors embedded into silicone sheath for composites health monitoring and wearable applications", Small., 15(17), 1-12. https://doi.org/10.1002/smll.201804991.   DOI
43 Cho, K. H., Song, M. G., Yang, S. Y., Kim, Y., Jung, H., Moon, H., Koo, J.C., Nam, J. and Choi, H. R. (2017), "Super Stretchable Soft Actuator Made of Twisted and Coiled Spandex Fiber", Electroact. Polym. Actuators Devices., 10163, 101630W. https://doi.org/10.1117/12.2261611.   DOI
44 Bien-aime, L.K.M., Blaise, B.B. and Beda, T. (2020), "Characterization of Hyperelastic Deformation Behavior of Rubber-like Materials", SN Appl. sci., 2(4). https://doi.org/10.1007/s42452-020-2355-6.   DOI
45 Boussoula, A., Boucham, B., Bourada, M., Bourada, F., Tounsi, A., Bousahla, A.A., and Tounsi, A., (2020), "A simple nth-order shear deformation theory for thermomechanical bending analysis of different configurations of FG sandwich plates", Smart Struct. Sys., 25(2), 197-218. https://doi.org/10.12989/sss.2020.25.2.197   DOI
46 Bousahla, A.A., Bourada, F., Mahmoud, S.R., Tounsi, A., Algarni, A., Bedia, E.A. and Tounsi, A., (2020), "Buckling and dynamic behavior of the simply supported CNT-RC beams using an integral-first shear deformation theory", Comp. Concrete, 25(2), 155-166. https://doi.org/10.12989/cac.2020.25.2.155   DOI
47 Chen, J., Zhu, Y. and Jiang, W. (2020), "A Stretchable and Transparent Strain Sensor Based on Sandwich-like PDMS / CNTs / PDMS Composite Containing an Ultrathin Conductive CNT Layer", Compos. Sci. Technol., 186, 107938. https://doi.org/10.1016/j.compscitech.2019.107938.   DOI
48 Chikr, S.C., Kaci, A., Bousahla, A.A., Bourada, F., Tounsi, A., Bedia, E.A., Mahmoud, S.R., Benrahou, K.H. and Tounsi, A., (2020), "A novel four-unknown integral model for buckling response of FG sandwich plates resting on elastic foundations under various boundary conditions using Galerkin's approach", Geom. Eng., 21(5), 471-487. https://doi.org/10.12989/gae.2020.21.5.471   DOI
49 Liu, Y. Z., Hao, Z. W., Yu, J. X., Zhou, X. R., Lee, P. S., Sun, Y., Mu, Z.C. and Zeng, F. L. (2019), "A high-performance soft actuator based on a poly(vinylidene fluoride) piezoelectric bimorph", Smart Mater. Struct., 28(5), https://doi.org/10.1088/1361-665X/ab0844.   DOI
50 Li, H., Yao, J., Zhou, P., Zhao, W., Xu, Y. and Zhao, Y., (2019), "Design and modeling of a high-load soft robotic gripper inspired by biological winding", Bioinspired. Biomim., 15(2), 026006. https://doi.org/10.1088/1748-3190/ab6033   DOI
51 Lu, N., Lu, C., Yang, S. and Rogers, J. (2012), "Highly Sensitive Skin-Mountable Strain Gauges Based Entirely on Elastomers", Adv. Funct. Mater., 22(19), 4044-4050. https://doi.org/10.1002/adfm.201200498.   DOI
52 Luo, S. and Liu, T. (2013), "Structure-Property-Processing Relationships of Single-Wall Carbon Nanotube Thin Film Piezoresistive Sensors", Carbon., 59, 315-324. https://doi.org/10.1016/j.carbon.2013.03.024.   DOI
53 Xu, H., Lv, Y., Qiu, D., Zhou, Y., Zeng, H. and Chu, Y. (2019), "An Ultra-Stretchable, Highly Sensitive and Biocompatible Capacitive Strain Sensor from an Ionic Nanocomposite for onSkin Monitoring", Nanoscale, 11(4), 1570-78. https://doi.org/10.1039/c8nr08589g.   DOI
54 Luo, Y. M., Chevalier, L., Monteiro, E., Yan, S. and Menary, G. (2020), "Simulation of the Injection Stretch Blow Molding Process: An Anisotropic Visco-Hyperelastic Model for Polyethylene Terephthalate Behavior", Polym. Eng. Sci., 60(4), 823-831. https://doi.org/10.1002/pen.25341.   DOI
55 Mansouri, M R, and H Darijani. (2014), "Constitutive Modeling of Isotropic Hyperelastic Materials in an Exponential Framework Using a Self-Contained Approach", J. Solids Struct., 51 (25-26), 4316-26. https://doi.org/https://doi.org/10.1016/j.ijsolstr.2014.08.018.   DOI
56 Matouk, H., Bousahla, A.A., Heireche, H., Bourada, F., Bedia, E.A., Tounsi, A., Mahmoud, S.R., Tounsi, A. and Benrahou, K.H. (2020), "Investigation on hygro-thermal vibration of P-FG and symmetric S-FG nanobeam using integral Timoshenko beam theory", Adv. Nano Res., 8(4), 293-305. https://doi.org/10.12989/anr.2020.8.4.293.   DOI
57 Zhu, Li, Zhou, X., Liu, Y. and Fu, Q. (2019), "Highly sensitive, ultrastretchable strain sensors prepared by pumping hybrid fillers of carbon nanotubes/cellulose nanocrystal into electrospun polyurethane membranes", ACS Appl. Mater. Interfaces., 11(13), 12968-12977. https://doi.org/10.1021/acsami.9b00136.   DOI
58 Xiang, S., Chen, S., Yao, M., Zheng, F. and Lu, Q. (2019), "Strain Sensor Based on a Flexible Polyimide Ionogel for Application in High- and Low-Temperature Environments", J. Mater. Chem. C., 7(31), 9625-9632. https://doi.org/10.1039/c9tc02719j.   DOI
59 Yan, X., Bowen, C., Yuan, C., Hao, Z. and Pan, M. (2019), "Carbon fibre based flexible piezoresistive composites to empower inherent sensing capabilities for soft actuators", Soft Matter, 15(40), 8001-8011. https://doi.org/10.1039/c9sm01046g.   DOI
60 Yao, S. and Zhu, Y. (2014), "Wearable multifunctional sensors using printed stretchable conductors made of silver nanowires", Nanoscale., 6(4), 2345. https://doi.org/10.1039/c3nr05496a.   DOI
61 Ren, M., Zhou, Y., Wang, Y., Zheng, G., Dai, K., Liu, C. and Shen, C. (2019), "Highly Stretchable and Durable Strain Sensor Based on Carbon Nanotubes Decorated Thermoplastic Polyurethane Fibrous Network with Aligned Wave-like Structure", Chem. Eng. J., 762-777. https://doi.org/10.1016/j.cej.2018.12.025.   DOI
62 Mosadegh, B., Polygerinos, P., Keplinger, C., Wennstedt, S., Shepherd, R. F., Gupta, U., Shim, J., Bertoldi, K., Walsh, C. and Whitesides, G.M. (2014), "Pneumatic networks for soft robotics that actuate rapidly", Adv. Funct. Mater, 24(15), 2163-2170. https://doi.org/10.1002/adfm.201303288.   DOI
63 Natarajan, E., Razif, M. R. M., Faudzi, A. A. M. and Palanikumar, K. (2020), "Evaluation of a Suitable Material for Soft Actuator through Experiments and FE Simulations", Int. J. Manuf. Mater. Mech. Eng., 10(2), 64-76. https://doi.org/10.4018/IJMMME.2020040104.   DOI
64 Xiao, Y., Jiang, S., Li, Y. and Zhang, W. (2020), "Highly sensitive printed crack-enhanced strain sensor as dual-directional bending detector", Smart Mater. Struct., 29(4), 045023. https://doi.org/10.1088/1361-665X/ab75a2.   DOI
65 Pinto, T., Cai, L., Wang, C. and Tan, X. (2017), "CNT-Based Sensor Arrays for Local Strain Measurements in Soft Pneumatic Actuators", Int. J. Intell. Robot. Appl. 1(2), 157-66. https://doi.org/10.1007/s41315-017-0018-6.   DOI
66 Polygerinos, P., Lyne, S., Wang, Z., Nicolini, L. F., Mosadegh, B., Whitesides, G. M. and Walsh, C. J. (2013), "Towards a Soft Pneumatic Glove for Hand Rehabilitation", IEEE Int. Conf. Intell. Robot. Syst., 1512-1517. https://doi.org/10.1109/IROS.2013.6696549.   DOI
67 Rahmani, M.C., Kaci, A., Bousahla, A.A., Bourada, F., Tounsi, A., Bedia, E.A., Mahmoud, S.R., Benrahou, K.H. and Tounsi, A., (2020), "Influence of boundary conditions on the bending and free vibration behavior of FGM sandwich plates using a fourunknown refined integral plate theory", Comp. Concrete, 25(3), 225-244. https://doi.org/10.12989/cac.2020.25.3.225   DOI
68 Ren, L., Li, B., Song, Z., Liu, Q., Ren, L. and Zhou, X. (2019), "3D Printing of Structural Gradient Soft Actuators by Variation of Bioinspired Architectures", J. Mater. Sci., 54(8), 6542-6551. https://doi.org/10.1007/s10853-019-03344-8.   DOI
69 Cohen, D. J., Mitra, D., Peterson, K. and Maharbiz, M. M. (2012), "A Highly Elastic, Capacitive Strain Gauge Based on Percolating Nanotube Networks", Nano Lett., 12(4), 1821-1825. https://doi.org/10.1021/nl204052z.   DOI
70 Chu, J., Marsden, A. J., Young, R. J. and Bissett, M. A. (2019), "Graphene-Based Materials as Strain Sensors in Glass Fiber / Epoxy Model Composites", ACS Appl. Mater. Interfaces., 11, 31338-31345. https://doi.org/10.1021/acsami.9b09862.   DOI
71 Deng, H., Ji, M., Yan, D., Fu, S., Duan, L., Zhang, M. and Fu, Q. (2014), "Towards Tunable Resistivity-Strain Behavior through Construction of Oriented and Selectively Distributed Conductive Networks in Conductive Polymer Composites", J. Mater. Chem. A., 2(26), 10048-58. https://doi.org/10.1039/C4TA01073F.   DOI
72 Roh, E., Hwang, B.U., Kim, D., Kim, B.Y. and Lee, N.E., (2015), "Stretchable, transparent, ultrasensitive, and patchable strain sensor for human-machine interfaces comprising a nanohybrid of carbon nanotubes and conductive elastomers", ACS Nano., 6, 6252-6261. https://doi.org/10.1021/acsnano.5b01613.   DOI
73 Giffney, T., Bejanin, E., Kurian, A. S., Travas-Sejdic, J. and Aw, K. (2017), "Highly Stretchable Printed Strain Sensors Using MultiWalled Carbon Nanotube/Silicone Rubber Composites", Sensors Actuators A Phys., 259, 44-49. https://doi.org/10.1016/j.sna.2017.03.005.   DOI
74 Ghorbanpour, A.A., Karamali, R.A., Roudbari, M.A., Azizkhani, M.B., and HAFIZI, B.A., (2015), "Axial and transverse vibration of SWBNNT system coupled Pasternak foundation under a moving nanoparticle using Timoshenko beam theory", J. Solid Mech., 7(3), 239-254.
75 Hajmohammad, M. H., Azizkhani, M. B., and Kolahchi, R. (2018), "Multiphase nanocomposite viscoelastic laminated conical shells subjected to magneto-hygrothermal loads: Dynamic buckling analysis", J. Mech. Sci., 137, 205-213. https://doi.org/10.1016/j.ijmecsci.2018.01.026   DOI
76 Zhang, X., Cao, J., Yang, Y., Wu, X., Zheng, Z. and Zhang, X. (2019), "Flame-Retardant, highly sensitive strain sensors enabled by renewable phytic acid-doped biotemplate synthesis and spirally structure design", Chem. Eng. J., 374, 730-737. https://doi.org/10.1016/j.cej.2019.05.211.   DOI
77 Miriyev, A., Xia, B., Joseph, J.C. and Lipson, H. (2019), "Additive Manufacturing of Silicone Composites for Soft Actuation", 3D Print. Addit. Manuf., 6(6), 309-318. https://doi.org/10.1089/3dp.2019.0116.   DOI
78 Yashiro, S., Wada, J. and Sakaida, Y. (2017), "A monitoring technique for disbond area in carbon fiber-reinforced polymer bonded joints using embedded fiber bragg grating sensors: Development and experimental validation", Struct. Heal. Monit., 16(2), 185-201. https://doi.org/10.1177/1475921716669979.   DOI
79 Zarei, M.S., Azizkhani, M.B., Hajmohammad, M.H., and Kolahchi, R. (2017), "Dynamic buckling of polymer-carbon nanotube-fiber multiphase nanocomposite viscoelastic laminated conical shells in hygrothermal environments", J. Sandw. Struct. Mater., 109963621774328. https://doi.org/10.1177/1099636217743288.   DOI
80 Zhang, L., Kou, H., Tan, Q., Liu, G., Zhang, W. and Xiong, J. (2019), "High-performance strain sensor based on a 3d conductive structure for wearable electronics", J. Phys. D. Appl. Phys., 52(39), 395401. https://doi.org/10.1088/1361-6463/ab2c78   DOI
81 Zhao, J., He, C., Yang, R., Shi, Z., Cheng, M., Yang, W., Xie, G., Wang, D., Shi, D. and Zhang, G. (2012), "Ultra-Sensitive strain sensors based on piezoresistive nanographene films", Appl. Phys. Lett., 101(6), 2010-2015. https://doi.org/10.1063/1.4742331.   DOI
82 Rukhlenko, I. D., Farajikhah, S., Lilley, C., Georgis, A., Large, M., and Fleming, S. (2020), "Performance Optimization of Polymer Fibre Actuators for Soft Robotics", Polymers., 12(2), https://doi.org/10.3390/polym12020454.   DOI