• 제목/요약/키워드: Hygroscopic Aerosol

검색결과 33건 처리시간 0.025초

Potential Biases Arising in the Use of Cascade Impactors to Estimate Respiratory Tract Deposition Patterns of Lead-Acid Battery Plant Aerosols

  • Hodgkins Douglas G.;Robins Thomas G.;Hinkamp David L.;Levine Steven P.;Schork M. Anthony;Krebs William H.
    • 대한예방의학회:학술대회논문집
    • /
    • 대한예방의학회 1994년도 교수 연수회(환경)
    • /
    • pp.585-595
    • /
    • 1994
  • The region of the respiratory tract where inhaled particles deposit can have important implications for the causation of local or systemic toxic effects. For most aerosols of occupational importance, respiratory tract deposition can be predicted from the aerodynamic diameter of the particles. With the advent of cascade impactors, particularly those of personal sampler size, the determination of the aerodynamic diameters of aerosols has become more common. Some limitations of cascade impactor use are well recognized (e.g., particle bounce and substrate overloading) and are generally correctable. However, two important limitations of the instruments may not be receiving adequate attention: relative humidity effects on potentially hygroscopic aerosols and the collection characteristics of fibrous aerosols as compared to their actual deposition site potential. The results of this study, when compared to results of previous controlled laboratory trials, suggest that, while potentially hygroscopic lead aerosols from lead acid battery plant operations do not appear to be affected by changes in plant environmental humidity levels, the potential - exists for significant size changes upon inhalation. Secondly, fibers were detected in aerodynamic size ranges that would be associated with deep lung deposition; however, upon microscopic examination, these same fibers would actually be predicted to deposit in the upper airways. This study suggests that the physicalchemical properties and morphological features of an aerosol should be carefully considered by industrial hygienists before cascade impactors are used in attempts to predict the effects of inhaled aerosols.

  • PDF

비접촉 생체신호 모니터링 응용을 위한 세라믹/메탈 할라이드 복합막 기반 습도센서 개발 (Development of Humidity Sensor Based on Ceramic/Metal Halide Composite Films for Non-Contact Biological Signal Monitoring Applications)

  • 박태웅;김익수;김민지;박철환;서의경;오종민
    • 한국전기전자재료학회논문지
    • /
    • 제35권4호
    • /
    • pp.412-417
    • /
    • 2022
  • Capacitive-type humidity sensors with a high sensitivity and fast response/recovery times have attracted a great attention in non-contact respiration biological signal monitoring applications. However, complicated fabrication processes involving high-temperature heat treatment for the hygroscopic film is essential in the conventional ceramic-based humidity sensors. In this study, a non-toxic ceramic/metal halide (BaTiO3(BT)/NaCl) humidity sensor was prepared at room temperature using a solvent-free aerosol deposition process (AD) without any additional process. Currently prepared BT/NaCl humidity sensor shows an excellent sensitivity (245 pF/RH%) and superior response/recovery times (3s/4s) due to the NaCl ionization effect resulting in an immense interfacial polarization. Furthermore, the non-contact respiration signal variation using the BT/NaCl sensor was determined to be over 700% by maintaining the distance of 20 cm between the individual and the sensor. Through the AD-fabricated sensor in this study, we expect to develop a non-contact biological signal monitoring system that can be applied to various fields such as respiratory disease detection and management, infant respiratory signal observation, and touchless skin moisture sensing button.

GOCI AOD를 이용한 서울 지역 지상 PM2.5 농도의 경험적 추정 및 일 변동성 분석 (Empirical Estimation and Diurnal Patterns of Surface PM2.5 Concentration in Seoul Using GOCI AOD)

  • 김상민;윤종민;문경정;김덕래;구자호;최명제;김광년;이윤곤
    • 대한원격탐사학회지
    • /
    • 제34권3호
    • /
    • pp.451-463
    • /
    • 2018
  • 본 연구는 서울지역에서 2015년 1월부터 12월까지 정지궤도 천리안 위성(Communication Ocean and Meteorological Satellite, COMS) 해양 탑재체(Geostationary Ocean Color Imager, GOCI)의 에어로졸광학두께(Aerosol Optical Depth, AOD)로부터 지상 초미세먼지(Particulate Matter; $PM_{2.5}$) 농도를 추정하기 위한 계절별 경험/통계모델을 개발했다. 행성경계층고도(Planetary Boundary Layer Height, PBLH) 그리고 에어로졸 수직 비율(Vertical Ratio of Aerosol, VRA)을 사용한 두 가지 수직보정방법과 흡습성장계수(Hygroscopic growth factor, f(RH))로부터의 습도보정방법이 각각의 경험적 모델에 적용된 결과 AOD에 대한 수직 보정과 $PM_{2.5}$에 대한 지표 습도보정이 모델 성능 향상에 중요한 역할을 했다. AOD-$PM_{2.5}$ 사이에 관련이 있다고 알려진 기상인자들(온도, 풍속, 시정)을 추가적으로 사용하여 다중 선형 회귀모델을 구성한 결과 경험모델에 비해 $R^2$값이 최대 0.25 증가했다. 본 연구에선 AOD-$PM_{2.5}$ 모델의 계절별, 월별, 시간별 특성을 분석하고 계절별로 구분하여 모델을 구성한 결과 고농도 사례에서 과소평가 되던 경향이 개선됨을 알 수 있고 관측된 $PM_{2.5}$와 추정된 $PM_{2.5}$의 월 및 시간변동성은 서로 경향성이 일치했다. 따라서 정지궤도 위성 AOD를 이용하여 지상 $PM_{2.5}$ 농도를 추정한 본 연구의 결과는 향후 발사 예정인 GK-2A와 GK-2B에 적용 가능할 것으로 기대된다.

Measurement and Interpretation of Time Variations of Particulate Matter Observed in the Busan Coastal Area in Korea

  • Kim, Cheol-Hee;Son, Hye-Young
    • Asian Journal of Atmospheric Environment
    • /
    • 제5권2호
    • /
    • pp.105-112
    • /
    • 2011
  • In order to investigate the effects of local and synoptic meteorological conditions on urban scale particulate air pollutants observed over the Busan coastal area, power spectrum analysis was applied to observed particulate matter with an aerodynamic diameter $\leq10\;{\mu}m$ ($PM_{10}$) for the period from 1 October, 1993 to 31 December, 2004. Fast Fourier Transform (FFT) analysis was used to obtain the hourly mean observed $PM_{10}$ concentrations to identify different periodicity scales of $PM_{10}$ concentrations. The results showed that, aside from the typical and well-known periodicities such as diurnal and annual variations caused by anthropogenic influences, three other significant power spectral density peaks were identified: 7-day, 21-day and 2.25-year periodicities. Cospectrum analysis indicated that the seven-day variations were closely related to the synoptic meteorological conditions such as weak wind speed, which are relevant to the stagnant high pressure system slowly passing through the Korean Peninsula. The intra-seasonal 21-day variation was negatively correlated with wind speed but was consistently positively correlated with relative humidity, which is related to aerosol formation that can be achieved as a result of the hygroscopic characteristics of aerosols. However, the quasibiennial 2.25-year variation was correlated with the frequency of Asian dust occurrence, the periodicities of which have been recorded inter-annually over the Korean Peninsula.

Estimation of the optimal heated inlet air temperature for the beta-ray absorption method: analysis of the PM10 concentration difference by different methods in coastal areas

  • Shin, So Eun;Jung, Chang Hoon;Kim, Yong Pyo
    • Advances in environmental research
    • /
    • 제1권1호
    • /
    • pp.69-82
    • /
    • 2012
  • Based on the measurement data of the particulate matter with an aerodynamic diameter of less than or equal to a nominal 10 ${\mu}m$ (PM10) by the ${\beta}$-ray absorption method (BAM) equipped with an inlet heater and the gravimetric method (GMM) at two coastal sites in Korea, the optimal inlet heater temperature was estimated. By using a gas/particle equilibrium model, Simulating Composition of Atmospheric Particles at Equilibrium 2 (SCAPE2), water content in aerosols was estimated with varying temperature to find the optimal temperature increase to make the PM10 concentration by BAM comparable to that by GMM. It was estimated that the heated air temperature inside the BAM should be increased up to $35{\sim}45^{\circ}C$ at both sites. At this temperature range, evaporation of volatile aerosol components was minor. Similar ($30{\sim}50^{\circ}C$) temperature range was also obtained from the calculation based on the absolute humidity which changed with ambient absolute humidity and chemical composition of hygroscopic species.

토양 성분이 입자 특성에 미치는 영향: 제주도 고산에서의 1994년 측정결과 모사 (Effects of Crustal Species on Characteristics of Aerosols: Simulation of Measurements at Kosan, Cheju Island, 1994)

  • 김용표;문길주
    • 한국대기환경학회지
    • /
    • 제12권3호
    • /
    • pp.289-296
    • /
    • 1996
  • Effects of crustal species on the characteristics of ambient particles were studied by applying a gas-particle equilibrium model, SCAPE, to the measurements at Kosan, Cheju Island during the spring and summer, 1994. Two cases were simulated; the measured composition was used without any modification (case 1), and the metal ion concentrations originated from crust were subtracted from the measured particle composition (case 2). Total suspended particles (TSPs) were collected by an automatic high volume tape sampler during spring period and by high volume samplers during summer period. The fine particles, PM 2.5, and gaseous volatile species were collected using a filter pack smapler during summer period. The water soluble ion concentrations were analyzed from all the particle samples. According to the simulation results, the effect of crustal elements on the chemical composition of particles is negligible for both TSP particles and PM 2.5 particles. Acidity of particles measured at Kosan, however, is affected by the change of the concentrations of crustal species, stronger effects for TSP particles than for PM 2.5 particles during summer, and stronger effects during summer than spring for TSP particle. The average pH decrease due to the absence of crustal species was about 0.10 for PM 2.5 particle during summer and 1.51 and 0.85 for TSP particles during summer spring, respectively. Water contents of PM 2.5 particles for both cases are comparable to each other. Estimated water content of TSP particles for case 2 is higher than that for case 1 by about 4 $\sim 6 \mum/m^3$ because salts of metal ions are not hygroscopic.

  • PDF

서울과 고산의 PM2.5 수분함량 계절 특성 (Seasonal Characteristics of PM2.5 Water Content at Seoul and Gosan, Korea)

  • 이형민;김용표
    • 한국대기환경학회지
    • /
    • 제26권1호
    • /
    • pp.94-102
    • /
    • 2010
  • Water content of $PM_{2.5}$ (particles in the atmosphere with a diameter of less than or equal to a nominal $2.5{\mu}m$) was estimated by using a gas/aerosol equilibrium model, SCAPE2, for the particles collected at Seoul and Gosan, Korea. From measured and analyzed characteristics of the particles, the largest difference between Seoul and Gosan is the proportions of total ammonia (t-$NH_3$=gas phase $NH_3$+particle phase ${NH_4}^+$), total nitric acid (t-$HNO_3$=gas phase $HNO_3$+particle phase ${NO_3}^-$) and sulfuric acid ($H_2SO_4$). Even though both sites have sufficient t-$NH_3$ to neutralize acidic species such as $H_2SO_4$, t-$HNO_3$, and t-HCl (total chloric acid=gas phase HCl+particle phase $Cl^-$), equivalent fraction of t-$NH_3$ and t-$HNO_3$ are higher at Seoul and $H_2SO_4$ is higher at Gosan. Based on the modeling result, it is identified that the $PM_{2.5}$ at Seoul is more hygroscopic than Gosan if the meteorological conditions are the same. To reduce water content of $PM_{2.5}$, and thus, mass concentration, control measures for ammonia and nitrate reduction are needed for Seoul, and inter-governmental cooperation is required for Gosan.

국립공원 지역 시정장애 현상의 물리.화학적 특성 (Physico-Chemical Characteristics of Visibility Impairment in a National Park Area)

  • 김경원
    • 한국대기환경학회지
    • /
    • 제25권4호
    • /
    • pp.325-338
    • /
    • 2009
  • National parks provide recreation, health, and science to human being. The provision of beautiful landscape view of the national park improves an economic and social phase of a nation. However, visibility impairment frequently occurred in the national park area of Gyeongju. The purpose of this study is to investigate the physical and the chemical characteristics of visibility reduction observed at the national park area of Gyeongju. Optical, chemical, meteorological characteristics and scenic monitoring were performed at the visibility monitoring station of Gyeongju University located at the Seoak section of Gyeongju national park from April 28 to May 9, 2008. Light extinction, light scattering, and light absorption coefficients were continuously measured using a transmissometer, a nephelometer, and an aethalometer, respectively. In order to investigate the impact of aerosol chemistry on visibility impairment, size-resolved aerosols were collected at intervals of 2-hour (from 8 A.M. to 6 P.M.) and 14-hour (from 6 P.M. to 8 A.M.) interval each sampling day. The average light extinction coefficient and the average visual range were measured to be $270{\pm}135\;Mm^{-1}$ and $14.5{\pm}6.3\;km$ during the intensive monitoring period, respectively. It was revealed that sulfate particle was the largest contributor to the light extinction under hazy condition. Organic mass accounted for about 26% of the average light extinction. The mass extinction efficiencies for $PM_{1.0}$, $PM_{2.5}$, and $PM_{10}$ were estimated to be 9.0, 4.7, and $2.7\;m^2\;g^{-1}$ under the consideration of water growth function of hygroscopic aerosols, respectively.

서울시 PM10 내의 수용성 유기탄소와 수분함량과의 상관성 분석 (The Relationship between the Estimated Water Content and Water Soluble Organic Carbon in PM10 at Seoul, Korea)

  • 이승하;김용표;이지이;이승묵
    • 한국대기환경학회지
    • /
    • 제33권1호
    • /
    • pp.64-74
    • /
    • 2017
  • In this study, we have analyzed relationship between the measured Water Soluble Organic Carbon (WSOC) concentrations and the estimated aerosol water content of $PM_{10}$ (particulate matter with an aerodynamic diameter of less than or equal to $10{\mu}m$) for the period between September 2006 and August 2007 at Seoul, Korea. Water content of $PM_{10}$ was estimated by using a gas/particle equilibrium model, Simulating composition of Atmospheric Particles at Equilibrium 2 (SCAPE2). The WSOC concentrations showed low correlation with Elemental Carbon (EC), but Water Insoluble Organic Carbon (WISOC) were highly correlated with EC. It seemed that hydrophilic groups were produced by secondary formation rather than primary formation. As with the previous studies, WSOC showed good correlation with secondary ions ($NO_3{^-}$, $SO_4{^{2-}}$, $NH_4{^+}$), especially WSOC was highly correlated with $NO_3{^-}$ that is a secondary ion formed by photochemical oxidation from more local sources than $SO_4{^{2-}}$. No apparent correlation between the measured WSOC and estimated water content was observed. However, WSOC showed good correlation with estimated water content when it was assumed that relative humidity was higher than the deliquescence relative humidity of the system. In conclusion, WSOC is correlated with water content by hygroscopic ions and it is expected that nitrate play an important role among the water content and WSOC.

광음향 및 네펠로미터 방식을 이용한 에어로졸 흡수 및 산란계수 측정 (Aerosol Light Absorption and Scattering Coefficient Measurements with a Photoacoustic and Nephelometric Spectrometer)

  • 김지형;김상우;허정화;남지현;김만해;유영석;임한철;이철규;허복행;윤순창
    • 대기
    • /
    • 제25권1호
    • /
    • pp.185-191
    • /
    • 2015
  • 고산기후관측소에서 2008년 8월과 9월의 Cheju ABC Plume Monsoon Experiment (CAPMEX) 기간 동안 3파장 photoacoustic soot spectrometer (PASS)로 측정된 에어로졸 흡수계수(${\sigma}_a$)와 에어로졸 산란계수(${\sigma}_s$)를 기존의 연구에서 널리 사용되고 있는 aethalometer 및 nephelometer의 동시관측 결과와 비교하였다. PASS ${\sigma}_a$의 관측결과는 aethalometer ${\sigma}_a$와 시간 변화 경향성이 매우 잘 일치했으나, 532 nm의 경우 절대값 면에서 PASS ${\sigma}_a$가 약 53% 큰 값을 보여 다소 차이가 있음을 알 수 있었다. PASS ${\sigma}_s$의 관측결과는 nephelometer ${\sigma}_s$와 비교했을 때, 근소한 차이로 매우 잘 일치함을 확인하였다(Bias Difference: $13.6Mm^{-1}$). 대기 중의 상대습도(RH)가 증가함에 따라 ${\sigma}_a$보다는 ${\sigma}_s$에 대한 영향이 큰 것으로 사료된다. Nephelometer ${\sigma}_s$와 PASS ${\sigma}_s$의 비율은 상대습도가 증가할수록 명확히 증가하는 경향성을 보였다. 이는 RH가 증가함에 따라서 PASS의 ${\sigma}_s$가 nephelometer ${\sigma}_s$에 비해서 상대적으로 감소하였음을 의미하며, 이러한 경향성은 RH가 70~80%를 넘어서면서 차이가 더욱 두드러지게 나타났다. Nephelometer와 aethalometer의 ${\sigma}_a$${\sigma}_s$ 관측 결과 보다 PASS의 측정 결과로부터 산출한 $A{\AA}E$$S{\AA}E$가 더 크게 나타났다.