Browse > Article
http://dx.doi.org/10.14191/Atmos.2015.25.1.185

Aerosol Light Absorption and Scattering Coefficient Measurements with a Photoacoustic and Nephelometric Spectrometer  

Kim, Ji-Hyoung (School of Earth and Environmental Sciences, Seoul National University)
Kim, Sang-Woo (School of Earth and Environmental Sciences, Seoul National University)
Heo, Junghwa (School of Earth and Environmental Sciences, Seoul National University)
Nam, Jihyun (School of Earth and Environmental Sciences, Seoul National University)
Kim, Man-Hae (School of Earth and Environmental Sciences, Seoul National University)
Yu, Yung-Suk (Korea Global Atmosphere Watch Center, Korea Meteorological Administration)
Lim, Han-Chul (Korea Global Atmosphere Watch Center, Korea Meteorological Administration)
Lee, Chulkyu (Korea Global Atmosphere Watch Center, Korea Meteorological Administration)
Heo, Bok-Haeng (Korea Global Atmosphere Watch Center, Korea Meteorological Administration)
Yoon, Soon-Chang (School of Earth and Environmental Sciences, Seoul National University)
Publication Information
Atmosphere / v.25, no.1, 2015 , pp. 185-191 More about this Journal
Abstract
Ambient measurements of aerosol light absorption (${\sigma}_a$) and scattering coefficients (${\sigma}_s$) were done at Gosan climate observatory during summer 2008 using a 3-wavelength photoacoustic soot spectrometer (PASS). PASS was deployed photoacoustic method for light absorption and integrated nephelometry for light scattering measurements. The ${\sigma}_a$ and ${\sigma}_s$ from PASS were compared with those from co-located aethalometer and nephelometer measurements. The aethalometer measurements of ${\sigma}_a$ correlated reasonably well with photoacoustic measurements, but the slope of the linear fitting line indicated the PASS measurement values of ${\sigma}_a$ were larger by a factor of 1.53. The nephelometer measurement values of ${\sigma}_s$ correlated very well with PASS measurements of ${\sigma}_s$, with a slope of 1.12 and a small offset. Comparing to the aethalometer measurements, the photoacoustic measurements of ${\sigma}_a$ didn't exhibit a significant (i.e., the ratio between aethalometer and PASS increased) change with increasing relative humidity (RH). The ratio of ${\sigma}_s$ between nephelometer and PASS increased with increasing RH, especially when the RH increased beyond 80%. This apparent increase in ${\sigma}_s$ with RH may be due to the contribution of hygroscopic growth of aerosols.
Keywords
Aerosol; absorption; scattering; PASS; aethalometer; nephelometer;
Citations & Related Records
연도 인용수 순위
  • Reference
1 Ajtai, T., A. Filep, N. Utry, M. Schnaiter, C. Linke, Z. Bozoki, G. Szabo, and T., Leisner, 2011: Inter-comparison of optical absorption coefficients of atmospheric aerosols determined by a multi-wavelength photoacoustic spectrometer and an aethalometer under sub-urban wintry conditions. J. Aerosol Sci., 42, 859-866, doi:10.1016/j.jaerosci.2011.07.008.   DOI
2 Anderson, T. L., and Coauthors, 1996: Performance characteristics of a high-sensitivity, three-wavelength, total scatter/backscatter nephelometer. J. Atmos. Oceanic Technol., 13, 967-986.   DOI
3 Anderson, T. L., and J. A. Ogren, 1998: Determining aerosol radiative properties using the TSI 3563 integrating Nephelometer. Aerosol Sci. Technol., 29, 57-69.
4 Andreae, M. O., and A. Gelencser, 2006: Black carbon or brown carbon? The nature of light-absorbing carbonaceous aerosols. Atmos. Chem. Phys., 6, 3131-3148, doi:10.5194/acp-6-3131-2006.   DOI
5 Arnott, W. P., H. Moosmuller, C. F. Rogers, T. Jin, and R. Bruch, 1999: Photoacoustic spectrometer for measuring light absorption by aerosol: instrument description. Atmos. Environ., 33, 2845-2852.   DOI
6 Arnott, W. P., K. Hamasha, H. Moosmuller, P. J. Sheridan, and J. A. Ogren, 2005: Towards aerosol light-absorption measurements with a 7-wavelength aethalometer: Evaluation with a photoacoustic instrument and 3- wavelength nephelometer. Aerosol Sci. Technol., 39, 17-29, doi:10.1080/027868290901972.   DOI
7 Bond, T. C., T. L. Anderson, and D. Campbell, 1999: Calibration and intercomparison of filter-based measurements of visible light absorption by aerosols. Aerosol Sci. Technol., 30, 582-600, doi:10.1080/027868299304435.   DOI
8 Coen, M. C., and Coauthors, 2010: Minimizing light absorption measurement artifacts of the Aethalometer: evaluation of five correction algorithms. Atmos. Meas. Tech., 3, 457-474.   DOI
9 Cross, E. S., and Coauthors, 2010: Soot prticle studies - instrument inter-comparison - project overview. Aerosol Sci. Technol., 44, 592-611.   DOI
10 Hansen, A. D. A., H. Rosen, and T. Novakov, 1984: The aethalometer - an instrument for the real-time measurement of optical absorption by aerosol particles. Sci. Total Environ., 36, 191-196.   DOI   ScienceOn
11 Lack, D. A., E. R. Lovejoy, T. Baynard, A. Pettersson, and A. R. Ravishankara, 2006: Aerosol absorption measurement using photoacoustic spectroscopy: sensitivity, calibration, and uncertainty developments. Aerosol Sci. Technol., 40, 697-708, doi:10.1080/02786820600803917.   DOI
12 Haywood, J. M., and K. P. Shine, 1995: The effect of anthropogenic sulfate and soot aerosol on the clear sky planetary radiation budget. Geophy. Res. Lett., 22, 603-606.   DOI
13 IPCC, 2013: Climate Change 2013: The Physical Science Basis. Contribution of Working Group I to the Fifth Assessment Report of the Intergovernmental Panel on Climate Change. Cambridge University Press, Cambridge, United Kingdom and New York, NY, USA, 1535 pp, doi:10.1017/CBO9781107415324.   DOI
14 Kirchstetter, T. W., and T. Novakov, 2004: Evidence that the spectral dependence of light absorption by aerosols is affected by organic carbon. J. Geophys. Res., 109, D21208, doi:10.1029/2004JD004999.   DOI
15 Lewis, K., W. P. Arnott, H. Moosmuller, and C. E. Wold, 2008: Strong spectral variation of biomass smoke light absorption and single scattering albedo observed with a novel dual-wavelength photoacoustic instrument. J. Geophys. Res., 113, D16203, doi:10.1029/2007JD009699.   DOI
16 Petzold, A., and Coauthors, 2013: Recommendations for reporting "black carbon" measurements. Atmos. Chem. Phys., 13, 8365-8379, doi:10.5194/acp-13-8365-2013.   DOI
17 Russell, P. B., and Coauthors, 2002: Comparison of aerosol single scattering albedos derived by diverse techniques in two North Atlantic experiments. J. Atmos. Sci., 59, 609-619, doi: http://dx.doi.org/10.1175/1520-0469(2002)059<0609:COASSA>2.0.CO;2.   DOI
18 Stephens, M., N. Turner, and J. Sandberg, 2003: Particle identification by laser-induced incandescence in a solid-state laser cavity. Appl. Opt., 42, 3726-3736.   DOI
19 Schmid, O., P. Artaxo, W. P. Arnott, D. Chand, L. V. Gatti, G. P. Frank, A. Hoffer, M. Schnaiter, and M. O. Andreae, 2006: Spectral light absorption by ambient aerosols influenced by biomass burning in the Amazon Basin. I: Comparison and field calibration of absorption measurement techniques. Atmos. Chem. Phys., 6, 3443-3462.   DOI
20 Slowik, J. G., and Coauthors, 2007: An inter-comparison of instruments measuring black carbon content of soot particles. Aerosol Sci. Technol., 41, 295-314.   DOI
21 Weingartner E., H. Saathoff, M. Schnaiter, N. Streit, B. Bitnar, and U. Baltensperger, 2003: Absorption of light by soot particles: determination of the absorption coefficient by means of aethalometers. J. Aerosol Sci., 34, 1445-1463.   DOI