• Title/Summary/Keyword: Hydrothermal treatment

Search Result 217, Processing Time 0.034 seconds

Effect of Alumina on the Ion-Exchange Capacity of Porous Glasses (다공질유리의 이온교환성에 미치는 알루미나의 영향)

  • 김병호;이덕열;김성길
    • Journal of the Korean Ceramic Society
    • /
    • v.25 no.3
    • /
    • pp.251-260
    • /
    • 1988
  • Ion-exchange porous glasses were prepared by heat treatment and subsequently hydro thermalor acid leaching treatment $10Li_2O$.$(90-x)B_2O_3$.$xSiO_2$ base glasses containing various amount of $Al_2O_3$ or $MoO_3$. It was investigated how the phase separation and the cation exchange capacity(CEC) were affected by the addition of $Al_2O_3$ or $MoO_3$. The optimum condition of phase separation in these glasses was about 48$0^{\circ}C$ for 10 hrs. The degree of phase separation was rapidly suppressed by the addition of $Al_2O_3$ up to 10 mol% and thereafter suppression effect was decreased. The maximum value of CEC, about 252meq/100g, was observed with the $1OLi_2O$.$45B_2O_3$.$45SiO_2+7.5Al_2O_3$ porous glass prepared by hydrothermal treatment and its mean pore radius was about 16.3A. The addition of $MoO_3$ accelerated phase separation and leaching rate. Looking at the remakable increment of pore diameter and pore volume of these porous glasses by the addition of $MoO_3$, the effect of $MoO_3$ may be ascribed to the lowering of silica concentration in the borate phase and to the forming of water-soluble complex with silica during the leaching treatment.

  • PDF

Effects of Substrate to Inoculum Ratio on Biochemical Methane Potential in Thermal Hydrolysate of Poultry Slaughterhouse Sludge (기질과 접종액의 비율이 도계 가공장 슬러지 열가수분해액의 메탄생산퍼텐셜에 미치는 영향)

  • Oh, Seung-Yong;Yoon, Young-Man
    • Korean Journal of Environmental Agriculture
    • /
    • v.35 no.2
    • /
    • pp.121-127
    • /
    • 2016
  • BACKGROUND: Anaerobic digestion is the most feasible technology because not only the energy embedded in organic matters can be recovered, but also they are stabilized while being degraded. This study carried out to improve methane yield of slaughterhouse wastewater treatment sludge cake by the thermal pre-treatment prior to anaerobic digestion.METHODS AND RESULTS: Slaughterhouse wastewater treatment sludge cake was pre-treated by the closed hydrothermal reactor at reaction temperature of 190℃. BMPs (Biochemical methane potential) of the thermal hydrolysate was tested in the different S(Substrate)/I(Inoculum) ratio conditions. COD(Chemical oxygen demand) and SCOD(Soluble chemical oxygen demand) contents of thermal hydrolysate were 10.99% and 10.55%, respectively, then, the 96.00% of COD was remained as a soluble form. The theoretical methane potential of thermal hydrolysate was 0.51 Nm3 kg-1-VSadded. And BMPs were decreased from 0.56 to 0.22 Nm3 kg-1-VSadded when S/I ratio were increased from 0.1 to 2.0 in the VS content basis. Those were decreased from 0.32 to 0.13 Nm3 kg-1-CODadded when S/I ratio were increased from 0.1 to 2.0 based on COD content. The anaerobic degradability of VS basis have showed 196.9%, 102.2%, 80.7%, 67.4%, and 39.4% in S/I ratios of 0.1, 0.3, 0.5, 1.0, and 2.0, respectively. Also the COD of 119.6%, 76.3%, 70.1%, 69.0%, and 43.1% were degraded anaerobically in S/I ratios of 0.1, 0.3, 0.5, 1.0, and 2.0, respectively.CONCLUSION: BMPs obtained in the S/I ratios of 0.1 and 0.3 was overestimated by the residual organic matters remaining at the inoculum. And inhibitory effect was observed in the highest S/I ratio of 2.0. The optimum S/I ratios giving reasonable BMPs might be in the range of 0.5 and 1.0 in S/I ratio. Therefore VS biodegradability of thermal hydrolysate was in 67.4-80.7% and COD biodegradability showed 69.0-70.1%.

Fabrication and Characterization of NiCo2O4/Ni Foam Electrode for Oxygen Evolution Reaction in Alkaline Water Splitting (알칼라인 수전해 산소 발생 반응을 위한 NiCo2O4/Ni foam 전극 제조 및 특성 평가)

  • Kwon, Minsol;Go, Jaeseong;Lee, Yesol;Lee, Sungmin;Yu, Jisu;Lee, Hyowon;Song, Sung Ho;Lee, Dongju
    • Journal of Powder Materials
    • /
    • v.29 no.5
    • /
    • pp.411-417
    • /
    • 2022
  • Environmental issues such as global warming due to fossil fuel use are now major worldwide concerns, and interest in renewable and clean energy is growing. Of the various types of renewable energy, green hydrogen energy has recently attracted attention because of its eco-friendly and high-energy density. Electrochemical water splitting is considered a pollution-free means of producing clean hydrogen and oxygen and in large quantities. The development of non-noble electrocatalysts with low cost and high performance in water splitting has also attracted considerable attention. In this study, we successfully synthesized a NiCo2O4/NF electrode for an oxygen evolution reaction in alkaline water splitting using a hydrothermal method, which was followed by post-heat treatment. The effects of heat treatment on the electrochemical performance of the electrodes were evaluated under different heat-treatment conditions. The optimized NCO/NF-300 electrode showed an overpotential of 416 mV at a high current density of 50 mA/cm2 and a low Tafel slope (49.06 mV dec-1). It also showed excellent stability (due to the large surface area) and the lowest charge transfer resistance (12.59 Ω). The results suggested that our noble-metal free electrodes have great potential for use in developing alkaline electrolysis systems.

Synthesis and Characterization of An Omnidirectional ZnO Piezoelectric Nanogenerator

  • Lee, Jun Young;Yeo, Jong Souk
    • Proceedings of the Korean Vacuum Society Conference
    • /
    • 2013.02a
    • /
    • pp.622-622
    • /
    • 2013
  • Piezoelectric energy harvesting (PEH) device refers to a power device for acquiring mechanical energy from the environment surrounding us which would otherwise be wasted and for converting it into usable electrical energy. While much work has been done on developing ZnO nanogenerator (NG) with nanowire arrays, there are some issues of not only scaling up its output power but also optimizing structure for operating feasibly in various conditions. Efficiency of NG is highly dependent on fixed orientation. But in many cases, it is not easy to predict where the pressure and vibration may come from. Furthermore, the direction of the applied mechanical stress is usually non-stationary and can be random in various practical applications. Therefore an omnidirectional PEH is needed.In this work, we investigate an omnidirectional PEH device consisting ZnO nanowires. We deposited spiral patterned ZnO seed layer on Kapton film. We deposited thin Cr layer on the ZnO seed layer using DC-sputter to form a passivation layer to retard un-expected growth of ZnO nanowires. We grew ZnO nanowires along the spiral arms using hydrothermal method. ZnO nanowires have been selectively grown from the ZnO sidewall without Cr layer and have the average length of$5{\mu}m$ and the average diameter of 40nm. We reduced the defect in the as-grown ZnO nanowires by O2 plasma using asher and by thermal treatment using RTA. Consequently, each nanowire has different directions to each other. This isotropic design can lead to the omnidirectional power generation. The morphology of NG is characterized with FESEM. Maximum output power of the device is measured by using a picoammeter and a nanovoltmeter.

  • PDF

Effect of EuO$_3$addition on hydrothermal stability of t-ZrO$_2$/Al$_2$O$_3$composites (t-ZrO$_2$/Al$_2$O$_3$복합체 상 안정성에 대한 Eu$_2$O$_3$첨가 효과)

  • 이득용;김대준;최성갑;이명현
    • Journal of the Korean Crystal Growth and Crystal Technology
    • /
    • v.10 no.3
    • /
    • pp.233-238
    • /
    • 2000
  • t-$ZrO_2/Al_2O_3$composites having a superior biocompatability and phase stability were prepared by adding 0~4 mol% of $Eu_2O_3$and sintered for 1 h at $1600^{\circ}C$ to evaluate phase stability, chromaticity and mechanical properties of the composites. No tetragonal to monoclinic phase transformation was observed for the composites containing $Eu_2O_3$after heat treatment for 20 h at $180^{\circ}C$ under 3.5 MPa water vapor pressure condition. As $Eu_2O_3$content increased, the color of the composites was changed from a slight white ivory to a light pink. The strength and the fracture toughness of the composites containing $Eu_2O_3$were above 620 MPa and 7.6 MPa.$m^{1/2}$, respectively, when $Eu_2O_3$was added up to 3 mol%.

  • PDF

Manufacture of $BaTiO_3$ Powders by Gel-hydrothermal Method (겔의 수열합성법에 의한 다공성 구형 $BaTiO_3$ 미분체의 제조)

  • Kim, Yong-Ryul
    • Journal of the Korean Applied Science and Technology
    • /
    • v.22 no.4
    • /
    • pp.306-314
    • /
    • 2005
  • In this study, spherical $pre-BaTiO_3$ particles are prepared by gelation and aging process in autoclave without catalysts. The (Ba-Ti) gel used as a starting material was prepared by aging mixtures of titanyl acylate with barium acetate aqueous solution([glacial acetic acid (AcOH)]/[titanium isopropoxide (TIP)] 4, [barium acetate]/[TIP] 1) at $45^{\circ}C$ for 48hrs. XRD and SEM results for the (Ba-Ti) gel sample at aging process showed that the gel was formed via aggregation of the fine particles. It seems to be the primary particles of bulk (Ba-Ti) gel amorphous, but the spatial arrangement of barium and titanium in the (Ba-Ti) gel is similar to that in crystalline $BaTiO_3$ particles. From XRD and FT-IR. spectroscopy analysis it was found that the crystal structure of the prepared particles continuously transformed from amorphous to tetragonal as the calcination temperature increased, and crystallized spherical cubic and tetragonal $BaTiO_3$ powder obtained at the very low calcination temperature between $500^{\circ}C$ and $900^{\circ}C$ after 1hrs of heat treatment respectively. According to BET analysis result, final particle have pore structure of ink bottle shape which is produced by aggregation of fine spherical particles with surface area of $280m^2/g$ and average pore size of 130nm.

Synthesis of Magneli Phases and Application to the Photoelectrochemical Electrode (마그넬리상 합성과 광전기화학셀 전극 응용)

  • Park, Jihwan;Nguyen, Duc Quang;Yang, Haneul;Hong, Soonhyun;Truong, Thi Hien;Kim, Chunjoong;Kim, Dojin
    • Korean Journal of Materials Research
    • /
    • v.28 no.5
    • /
    • pp.261-267
    • /
    • 2018
  • Hydrothermal synthesis of highly crystalline $TiO_2$ nanorods is a well-developed technique and the nanorods have been widely used as the template for growth of various core-shell nanorod structures. Magneli/CdS core-shell nanorod structures are fabricated for the photoelectrochemical cell (PEC) electrode to achieve enhanced carrier transport along the metallic magneli phase nanorod template. However, the long and thin $TiO_2$ nanorods may form a high resistance path to the electrons transferred from the CdS layer. $TiO_2$ nanorods synthesized are reduced to magneli phases, $TixO_{2x-1}$, by heat treatment in a hydrogen environment. Two types of magneli phase nanorods of $Ti_4O_7$ and $Ti_3O_5$ are synthesized. Structural morphology and X-ray diffraction analyses are carried out. CdS nano-films are deposited on the magneli nanorods for the main light absorption layer to form a photoanode, and the PEC performance is measured under simulated sunlight irradiation and compared with the conventional $TiO_2/CdS$ core-shell nanorod electrode. A higher photocurrent is observed from the stand-alone $Ti_3O_5/CdS$ core-shell nanorod structure in which the nanorods are grown on both sides of the seed layer.

Synthesis of Microporous Zeolitic Membranes and Application in Alcohol/water Separation (다공성 제올라이트 멤브레인의 합성 및 알코올 /물 분리에의 응용)

  • 김건중;남세종
    • Membrane Journal
    • /
    • v.9 no.2
    • /
    • pp.97-106
    • /
    • 1999
  • A and 2SM-5 type zeoli tic crystal films were synthesized on porous supports from the reaction mixture of 1.9 ${SiO}_2$1.5 $Na_20-Al_2O_3-40$ $H_20$ and $Si0_2$-0.l3 $Na_2O$-52 $H_20$-O.l2 TPAOH composition, respectively. The zeolite films were characterized by XRD and SEM. The 2SM -5 crystals grown on the porous matrix were very closely bound together. It was so difficult to obtain the perfectly intergrown crystals in the case of A-type zeolite and this crystal was transformed into P-type zeolite membrane with a prolonged reaction time. The densely intergrown A type zeolite crystal membrane could be also synthesized by the hydrothermal treatment at 100$^{\cirt}C$ after pressing the reaction mixture without addition of water. The pervaporation performance of the synthesized porous inorganic membranes was investigated for alcohol and water mixtures. A-type zeolite membrane crystallized as a thin film showed the selective \'Jermeability of water from the mixtures through the molecular sieving activity of micropores.

  • PDF

Green synthesis of fluorescent carbon dots from carrot juice for in vitro cellular imaging

  • Liu, Yang;Liu, Yanan;Park, Mira;Park, Soo-Jin;Zhang, Yifan;Akanda, Md Rashedunnabi;Park, Byung-Yong;Kim, Hak Yong
    • Carbon letters
    • /
    • v.21
    • /
    • pp.61-67
    • /
    • 2017
  • We report the use of carrot, a new and inexpensive biomaterial source, for preparing high quality carbon dots (CDs) instead of semi-conductive quantum dots for bioimaging application. The as-derived CDs possessing down and up-conversion photoluminescence features were obtained from carrot juice by commonly used hydrothermal treatment. The corresponding physiochemical and optical properties were investigated by electron microscopy, fluorescent spectrometry, and other spectroscopic methods. The surfaces of obtained CDs were highly covered with hydroxyl groups and nitrogen groups without further modification. The quantum yield of as-obtained CDs was as high as 5.16%. The cell viability of HaCaT cells against a purified CD aqueous solution was higher than 85% even at higher concentration ($700{\mu}g\;mL^{-1}$) after 24 h incubation. Finally, CD cultured cells exhibited distinguished blue, green, and red colors, respectively, during in vitro imaging when excited by three wavelength lasers under a confocal microscope. Offering excellent optical properties, biocompatibility, low cytotoxicity, and good cellular imaging capability, the carrot juice derived CDs are a promising candidate for biomedical applications.

Studies on the Extraction Method and Polysaccharide of Tricholoma matsutake using the Supersonic wave and Microwave (초음파와 극초단파를 이용한 송이버섯의 추출법과 다당체에 관한 연구)

  • Yu, Seung-Hyun;Chong, Myong-Soo;Kim, Hae-Ja;Lee, Ki-Nam
    • Journal of Physiology & Pathology in Korean Medicine
    • /
    • v.21 no.6
    • /
    • pp.1431-1436
    • /
    • 2007
  • In order to optimize the extract condition and improve physiological activity of the extract form Tricholoma matsutake, experiments related to extraction methods, totale yield, content of total soluble polysaccharide, SOD-like activity, total polyphenol amount, and volatile flavor compound and the others were carried out, results were obtained as following: Compare with traditional hydrothermal extraction method (Hot water extraction : HWEW), it illustrates that the low temperature extraction method which combines a supersonic waves and microwave (Supersonic microwave extraction : SMEW) causes of increasing the total yield, total soluble polysaccharide. As to the anti-oxident effect, SMEW method leds to increasing of the SOD-like activity, total polyphenol amount as well. Also, cytotoxic effect and growth inhibitory effect against cancer cell line are much higher in SMEW method than HWEW method, especially SMEW5 extracts treated by supersonic 15 min. and microwave 120W, 3 min. and 2 times. The main volatile flavor compound and infinitesimal volatile flavor compound both increase significantly by SMEW method. It is concluded the main components of the volatile flavor compounds extracted from Tricholoma matsutake are 1-octen-3-0l, Methyl cinnamate, 2-octeno1 et al. alcohol typies. Consequently, SMEW5 method is considered as the most effective one for anti-oxidant and is prior to any other methods. And the optimun conditions of this method are : supersonic waves (supersonic, 25KHz, 50W) 15 minutes, microwave spectroscopy (microwave, 2,450MHz, 120W) 3 minutes, and every treatment is performed once followed twice repeats.