DOI QR코드

DOI QR Code

Synthesis of Magneli Phases and Application to the Photoelectrochemical Electrode

마그넬리상 합성과 광전기화학셀 전극 응용

  • Park, Jihwan (Department of Materials Science and Engineering, Chungnam National University) ;
  • Nguyen, Duc Quang (Department of Materials Science and Engineering, Chungnam National University) ;
  • Yang, Haneul (Department of Materials Science and Engineering, Chungnam National University) ;
  • Hong, Soonhyun (Department of Materials Science and Engineering, Chungnam National University) ;
  • Truong, Thi Hien (Department of Materials Science and Engineering, Chungnam National University) ;
  • Kim, Chunjoong (Department of Materials Science and Engineering, Chungnam National University) ;
  • Kim, Dojin (Department of Materials Science and Engineering, Chungnam National University)
  • 박지환 (충남대학교 공과대학 신소재공학과) ;
  • ;
  • 양하늘 (충남대학교 공과대학 신소재공학과) ;
  • 홍순현 (충남대학교 공과대학 신소재공학과) ;
  • ;
  • 김천중 (충남대학교 공과대학 신소재공학과) ;
  • 김도진 (충남대학교 공과대학 신소재공학과)
  • Received : 2018.03.27
  • Accepted : 2018.04.08
  • Published : 2018.05.27

Abstract

Hydrothermal synthesis of highly crystalline $TiO_2$ nanorods is a well-developed technique and the nanorods have been widely used as the template for growth of various core-shell nanorod structures. Magneli/CdS core-shell nanorod structures are fabricated for the photoelectrochemical cell (PEC) electrode to achieve enhanced carrier transport along the metallic magneli phase nanorod template. However, the long and thin $TiO_2$ nanorods may form a high resistance path to the electrons transferred from the CdS layer. $TiO_2$ nanorods synthesized are reduced to magneli phases, $TixO_{2x-1}$, by heat treatment in a hydrogen environment. Two types of magneli phase nanorods of $Ti_4O_7$ and $Ti_3O_5$ are synthesized. Structural morphology and X-ray diffraction analyses are carried out. CdS nano-films are deposited on the magneli nanorods for the main light absorption layer to form a photoanode, and the PEC performance is measured under simulated sunlight irradiation and compared with the conventional $TiO_2/CdS$ core-shell nanorod electrode. A higher photocurrent is observed from the stand-alone $Ti_3O_5/CdS$ core-shell nanorod structure in which the nanorods are grown on both sides of the seed layer.

Keywords

References

  1. M. G. Walter, E. L. Warren, J. R. McKone, S. W. Boettcher, Q. Mi, E. A. Santori, and N. S. Lewis, Chem. Rev. (Washington, DC, U. S.), 110, 6446 (2010). https://doi.org/10.1021/cr1002326
  2. R. Abe, J. Photochem. Photobiol., C, 11, 179 (2010). https://doi.org/10.1016/j.jphotochemrev.2011.02.003
  3. X. Li, J. Yu, J. Low, Y. Fang, J. Xiao, and X. Chen, J. Mater. Chem. A, 3, 2485 (2015). https://doi.org/10.1039/C4TA04461D
  4. Z. Li, W. Luo, M. Zhang, J. Feng, and Z. Zou, Energy Environ. Sci., 6, 347 (2013). https://doi.org/10.1039/C2EE22618A
  5. W.-T. Sun, Y. Yu, H.-Y. Pan, X.-F. Gao, Q. Chen, and L.-M. Peng, J. Am. Chem. Soc., 130, 1124 (2008). https://doi.org/10.1021/ja0777741
  6. H. Wang, Y. Bai, H. Zhang, Z. Zhang, J. Li, and L. Guo, J. Phys. Chem. C, 114, 16451 (2010). https://doi.org/10.1021/jp104208z
  7. X. Qi, G. She, Y. Liu, L. Mu, and W. Shi, Chem. Commun. (Cambridge, U. K.), 48, 242 (2012). https://doi.org/10.1039/C1CC15674H
  8. J. Li, M. W. Hoffmann, H. Shen, C. Fabrega, J. D. Prades, T. Andreu, F. Hernandez-Ramirez, and S. Mathur, J. Mater. Chem., 22, 20472 (2012). https://doi.org/10.1039/c2jm33404f
  9. H. N. Hieu, N. M. Vuong, and D. Kim, J. Electrochem. Soc., 160, H852 (2013). https://doi.org/10.1149/2.108311jes
  10. H. N. Hieu, N. Q. Dung, J. Kim, and D. Kim, Nanoscale, 5, 5530 (2013). https://doi.org/10.1039/c3nr00889d
  11. X. Wang, Z. Li, J. Shi, and Y. Yu, Chem. Rev. (Washington, DC, U. S.), 114, 9346 (2014). https://doi.org/10.1021/cr400633s
  12. L. E. Greene, M. Law, D. H. Tan, M. Montano, J. Goldberger, G. Somorjai, and P. Yang, Nano Lett., 5, 1231 (2005). https://doi.org/10.1021/nl050788p
  13. C. Acha, M. Monteverde, M. Nunez-Regueiro, A. Kuhn, and M. A. Franco, Eur. Phys. J. B, 34, 421 (2003). https://doi.org/10.1140/epjb/e2003-00240-2
  14. L. Zheng, Sens. Actuators, B, 88, 115 (2003). https://doi.org/10.1016/S0925-4005(02)00302-7
  15. H.-S. Kim, J.-W. Lee, N. Yantara, P. P. Boix, S. A. Kulkarni, S. Mhaisalkar, M. Gratzel, and N.-G. Park, Nano Lett., 13, 2412 (2013). https://doi.org/10.1021/nl400286w
  16. Z. Zhang, J.-Y. Hwang, M. Ning, and X. Li, Int. J. Hydrogen Energy, 37, 16018 (2012). https://doi.org/10.1016/j.ijhydene.2012.08.044
  17. Y. Li, M. Guo, M. Zhang, and X. Wang, Mater. Res. Bull., 44, 1232 (2009). https://doi.org/10.1016/j.materresbull.2009.01.009
  18. A. Gusev, E. Avvakumov, and O. Vinokurova, Sci. Sintering, 35, 141 (2003). https://doi.org/10.2298/SOS0303141G
  19. H. Khallaf, I. O. Oladeji, G. Chai, and L. Chow, Thin Solid Films, 516, 7306 (2008). https://doi.org/10.1016/j.tsf.2008.01.004
  20. G. Wang, Y. Liu, J. Ye, and W. Qiu, J. Alloys Compd., 704, 18 (2017). https://doi.org/10.1016/j.jallcom.2017.02.022
  21. N. D. Quang, D. Kim, T. T. Hien, D. Kim, S.-K. Hong, and C. Kim, J. Electrochem. Soc., 163, H434 (2016). https://doi.org/10.1149/2.1041606jes
  22. N. M. Vuong, T. T. Hien, N. D. Quang, N. D. Chinh, D. S. Lee, D. Kim, and D. Kim, J. Power Sources, 317, 169 (2016). https://doi.org/10.1016/j.jpowsour.2016.03.106
  23. S. B. A. Hamid, S. J. Teh, C. W. Lai, S. Perathoner, and G. Centi, J. Energy Chem., 26, 302 (2017). https://doi.org/10.1016/j.jechem.2016.11.006
  24. J. Wang, C. Chen, Z. Ren, and Z. Wang, Semicond. Sci. Technol., 29, 055006 (2014). https://doi.org/10.1088/0268-1242/29/5/055006
  25. Y. Li, Y. Hao, S. Sun, B. Sun, J. Pei, Y. Zhang, D. Xu, and L. Liu, RSC Advances, 3, 1541 (2013). https://doi.org/10.1039/C2RA21545D
  26. Y. Cai, M. Stromme, and K. Welch, PLoS One, 8, e75929 (2013). https://doi.org/10.1371/journal.pone.0075929