Browse > Article
http://dx.doi.org/10.3740/MRSK.2018.28.5.261

Synthesis of Magneli Phases and Application to the Photoelectrochemical Electrode  

Park, Jihwan (Department of Materials Science and Engineering, Chungnam National University)
Nguyen, Duc Quang (Department of Materials Science and Engineering, Chungnam National University)
Yang, Haneul (Department of Materials Science and Engineering, Chungnam National University)
Hong, Soonhyun (Department of Materials Science and Engineering, Chungnam National University)
Truong, Thi Hien (Department of Materials Science and Engineering, Chungnam National University)
Kim, Chunjoong (Department of Materials Science and Engineering, Chungnam National University)
Kim, Dojin (Department of Materials Science and Engineering, Chungnam National University)
Publication Information
Korean Journal of Materials Research / v.28, no.5, 2018 , pp. 261-267 More about this Journal
Abstract
Hydrothermal synthesis of highly crystalline $TiO_2$ nanorods is a well-developed technique and the nanorods have been widely used as the template for growth of various core-shell nanorod structures. Magneli/CdS core-shell nanorod structures are fabricated for the photoelectrochemical cell (PEC) electrode to achieve enhanced carrier transport along the metallic magneli phase nanorod template. However, the long and thin $TiO_2$ nanorods may form a high resistance path to the electrons transferred from the CdS layer. $TiO_2$ nanorods synthesized are reduced to magneli phases, $TixO_{2x-1}$, by heat treatment in a hydrogen environment. Two types of magneli phase nanorods of $Ti_4O_7$ and $Ti_3O_5$ are synthesized. Structural morphology and X-ray diffraction analyses are carried out. CdS nano-films are deposited on the magneli nanorods for the main light absorption layer to form a photoanode, and the PEC performance is measured under simulated sunlight irradiation and compared with the conventional $TiO_2/CdS$ core-shell nanorod electrode. A higher photocurrent is observed from the stand-alone $Ti_3O_5/CdS$ core-shell nanorod structure in which the nanorods are grown on both sides of the seed layer.
Keywords
magneli phase; photoelectrochemical cells; CdS; $TiO_2$;
Citations & Related Records
연도 인용수 순위
  • Reference
1 Y. Cai, M. Stromme, and K. Welch, PLoS One, 8, e75929 (2013).   DOI
2 N. D. Quang, D. Kim, T. T. Hien, D. Kim, S.-K. Hong, and C. Kim, J. Electrochem. Soc., 163, H434 (2016).   DOI
3 N. M. Vuong, T. T. Hien, N. D. Quang, N. D. Chinh, D. S. Lee, D. Kim, and D. Kim, J. Power Sources, 317, 169 (2016).   DOI
4 M. G. Walter, E. L. Warren, J. R. McKone, S. W. Boettcher, Q. Mi, E. A. Santori, and N. S. Lewis, Chem. Rev. (Washington, DC, U. S.), 110, 6446 (2010).   DOI
5 R. Abe, J. Photochem. Photobiol., C, 11, 179 (2010).   DOI
6 X. Li, J. Yu, J. Low, Y. Fang, J. Xiao, and X. Chen, J. Mater. Chem. A, 3, 2485 (2015).   DOI
7 Z. Li, W. Luo, M. Zhang, J. Feng, and Z. Zou, Energy Environ. Sci., 6, 347 (2013).   DOI
8 W.-T. Sun, Y. Yu, H.-Y. Pan, X.-F. Gao, Q. Chen, and L.-M. Peng, J. Am. Chem. Soc., 130, 1124 (2008).   DOI
9 X. Qi, G. She, Y. Liu, L. Mu, and W. Shi, Chem. Commun. (Cambridge, U. K.), 48, 242 (2012).   DOI
10 H. Wang, Y. Bai, H. Zhang, Z. Zhang, J. Li, and L. Guo, J. Phys. Chem. C, 114, 16451 (2010).   DOI
11 J. Li, M. W. Hoffmann, H. Shen, C. Fabrega, J. D. Prades, T. Andreu, F. Hernandez-Ramirez, and S. Mathur, J. Mater. Chem., 22, 20472 (2012).   DOI
12 H. N. Hieu, N. M. Vuong, and D. Kim, J. Electrochem. Soc., 160, H852 (2013).   DOI
13 H. N. Hieu, N. Q. Dung, J. Kim, and D. Kim, Nanoscale, 5, 5530 (2013).   DOI
14 X. Wang, Z. Li, J. Shi, and Y. Yu, Chem. Rev. (Washington, DC, U. S.), 114, 9346 (2014).   DOI
15 L. E. Greene, M. Law, D. H. Tan, M. Montano, J. Goldberger, G. Somorjai, and P. Yang, Nano Lett., 5, 1231 (2005).   DOI
16 C. Acha, M. Monteverde, M. Nunez-Regueiro, A. Kuhn, and M. A. Franco, Eur. Phys. J. B, 34, 421 (2003).   DOI
17 L. Zheng, Sens. Actuators, B, 88, 115 (2003).   DOI
18 H.-S. Kim, J.-W. Lee, N. Yantara, P. P. Boix, S. A. Kulkarni, S. Mhaisalkar, M. Gratzel, and N.-G. Park, Nano Lett., 13, 2412 (2013).   DOI
19 Z. Zhang, J.-Y. Hwang, M. Ning, and X. Li, Int. J. Hydrogen Energy, 37, 16018 (2012).   DOI
20 Y. Li, M. Guo, M. Zhang, and X. Wang, Mater. Res. Bull., 44, 1232 (2009).   DOI
21 A. Gusev, E. Avvakumov, and O. Vinokurova, Sci. Sintering, 35, 141 (2003).   DOI
22 H. Khallaf, I. O. Oladeji, G. Chai, and L. Chow, Thin Solid Films, 516, 7306 (2008).   DOI
23 Y. Li, Y. Hao, S. Sun, B. Sun, J. Pei, Y. Zhang, D. Xu, and L. Liu, RSC Advances, 3, 1541 (2013).   DOI
24 G. Wang, Y. Liu, J. Ye, and W. Qiu, J. Alloys Compd., 704, 18 (2017).   DOI
25 S. B. A. Hamid, S. J. Teh, C. W. Lai, S. Perathoner, and G. Centi, J. Energy Chem., 26, 302 (2017).   DOI
26 J. Wang, C. Chen, Z. Ren, and Z. Wang, Semicond. Sci. Technol., 29, 055006 (2014).   DOI