• Title/Summary/Keyword: Hydrothermal synthetic

Search Result 82, Processing Time 0.019 seconds

Spectroscopic Characteristics of synthetic and natural emerald by heat treatment (열처리에 따른 합성과 천연 에메랄드의 분광특성분석)

  • Hwoang, Hye-Kyung;Ahn, Yong-Kil;Seo, Jin-Gyo;Park, Jong-Wan
    • Journal of the Korea Academia-Industrial cooperation Society
    • /
    • v.11 no.1
    • /
    • pp.29-36
    • /
    • 2010
  • The spectroscopic characteristics of synthetic and natural emeralds were investigated by UV-Vis and FTIR spectroscopy before and after heat treatment. The Mo and Co for synthetic flux and C1 for synthetic hydrothermal emeralds have been detected by X-ray fluorescence analysis. In the region of UV-Visible, the absorption of emerald from Colombia was generally increased after the heat treatment. The peak which related to C1 component in the $3000-2600cm^{-1}$ was shown in the hydrothermal synthetic emeralds by FTIR spectroscopy. The $2358cm^{-1}$ peak which originates from $CO_2$ was decreased after the heat treatment in the natural emerald. This was corresponded with the changes of gas element after heat treatment.

Characterization and hydrothermal surface modification of non-swelling property mica using nano silver (은나노를 이용한 비팽윤성 운모의 수열적인 표면개질 및 특성평가)

  • Seok, Jeong-Won;Park, Ra-Young;Kim, Pan-Chae
    • Journal of the Korean Crystal Growth and Crystal Technology
    • /
    • v.17 no.4
    • /
    • pp.172-178
    • /
    • 2007
  • Mica (muscovite) powders were synthesized by hydrothermal method (horizontal turning method). The hydrothermal conditions for the synthesis of mica were prepared by the ratio of $K_2O : Al(OH)_3 : SiO_2$ = 1 : 3 : 3 mol% as the starting materials with KOH (8 mol%) solution as the hydrothermal solvent and reaction temperature at $260^{\circ}C$ for 72hrs. The synthetic powder used for preparation of nano silver coated mica by vertical hydrothermal treatment. The hydrothermal conditions for the treated as nano silver coating were prepared by the synthetic powder as raw materials, triple distilled water ($0.5{\ell}$) solution as the hydrothermal solvent with nano silver sol (1,000 ppm) as the material of nano silver coating and reaction temperature at $160{\sim}260^{\circ}C$ for 72 hrs. After hydrothermal treatment, structural, judgment of nano silver coating and character of nano silver coated mica were examined by XRD, SEM, TEM-EDX and shake plask method.

A review: Synthetic strategy control of magnetite nanoparticles production

  • Yusoff, Ahmad H.M.;Salimi, Midhat N.;Jamlos, Mohd F.
    • Advances in nano research
    • /
    • v.6 no.1
    • /
    • pp.1-19
    • /
    • 2018
  • Iron oxide nanoparticles excite researcher interest in biomedical applications due to their low cost, biocompatibility and superparamagnetism properties. Magnetic iron oxide especially magnetite ($Fe_3O_4$) possessed a superparamagnetic behaviour at certain nanosize which beneficial for drug and gene delivery, diagnosis and imaging. The properties of nanoparticles mainly depend on their synthesis procedure. There has been a massive effort in developing the best synthetic strategies to yield appropriate physico-chemical properties namely co-precipitation, thermal decomposition, microemulsions, hydrothermal and sol-gel. In this review, it is discovered that magnetite nanoparticles are best yielded by co-precipitation method owing to their simplicity and large production. However, its magnetic saturation is within range of 70-80 emu/g which is lower than thermal decomposition and hydrothermal methods (80-90 emu/g) at 100 nm. Dimension wise, less than 100 nm is produced by co-precipitation method at $70^{\circ}C-80^{\circ}C$ while thermal decomposition and hydrothermal methods could produce less than 50 nm but at very high temperature ranging between $200^{\circ}C$ and $300^{\circ}C$. Thus, co-precipitation is the optimum method for pre-compliance magnetite nanoparticles preparation (e.g., 100 nm is fit enough for biomedical applications) since thermal decomposition and hydrothermal required more sophisticated facilities.

Synthesis and Characterization of Zeolite Composite Membranes (II): Synthesis and $CO_2$ Separation Efficiency of ZSM-5 Zeolite Composite Membranes (제올라이트 복합 분리막의 합성 및 특성화(II): ZSM-5 제올라이트 복합막의 합성 및 $CO_2$ 분리 효율)

  • 현상훈;송재권;김준학
    • Journal of the Korean Ceramic Society
    • /
    • v.34 no.7
    • /
    • pp.747-757
    • /
    • 1997
  • ZSM-5 zeolite composite membranes have been synthesized from a silica sol solution containing TPABr as an organic template by the dip-coating and the pressurized-coating hydrothermal treatment techniques. The CO2 separation efficiency of synthesized composite membranes was also investigated. The permeation mechanism of CO2 through ZSM-5 membranses was the surface diffusion, and that of N2, O2, and He gases was Knudsen diffusion or activated diffusion depending on the synthetic method of membranes and the measurement temperature. The CO2/N2 separation factor of the membrane prepared by the dip-coating hydrothermal treatment was 2.5 at about 12$0^{\circ}C$, while the ZSM-5 composite membrane synthesized by the pressurized-coating hydrothermal treatment technique showed the CO2/N2 separation factor of 9.0 at room temperature higher than that ever reported in the literature.

  • PDF

Hydrothermal Synthesis of Smectite from Zeolite (제올라이트로부터 스멕타이트 수열 합성에 대한 연구)

  • Chae, Soo-Chun;Kim, You-Dong;Jang, Young-Nam;Bae, In-Kook;Ryu, Kyung-Won;Lee, Sung-Ki
    • Journal of the Mineralogical Society of Korea
    • /
    • v.19 no.4 s.50
    • /
    • pp.301-310
    • /
    • 2006
  • Smectites were synthesized from Na-P type and Na-A type zeolites by the hydrothermal synthetic method, and their physicochemical properties were studied. The optimal synthetic conditions for producing smectite were $290^{\circ}C$, 72 hr and $75{\sim}100kgf/cm^2$ in autogenous pressure. pHs of initial reaction solutions for the synthesis of smectites from Na-P type and Na-A type zeolite s were pH 6 and pH 10, respectively. The synthetic smectite was confirmed as $12{\AA}$-beidellite by a series of analysis such as X-ray diffraction analysis with random and oriented mounts, ethylene glycol treatment, and Greene-Kelly test, and their several physicochemical properties were studied.

Synthesis of Ultra-fine Hydroxyapatite Powders by Hydrothermal Reaction (수열반응에 의한 Hydroxyapatite 초미분말의 제조)

  • 민경소;최재웅;최상흘
    • Journal of the Korean Ceramic Society
    • /
    • v.29 no.12
    • /
    • pp.997-1003
    • /
    • 1992
  • Ultra-fine hydroxyapatite powders were synthesized by the hydrothermal reaction of Ca(OH)2 suspension or Ca(NO3)2$.$4H2O solution with (NH4)2HPO4 solution, and the powders were characterized for each synthetic condition. Crystalline hydroxyapatite powders have average grain size of less than 50 nm. By increasing the reaction pressure, the crystallinity was improved, and the crystals were preferentially growing along c-axis. When Ca(NO3)2$.$4H2O of high solubility was used, hydroxyapatite of single phase was produced. However when Ca(OH)2 of low solubility was used more than 0.334 mol/ι, unreacted Ca(OH)2 remained. Diffraction spot patterns of transmission electron microscope show that powders synthesized by the hydrothermal reaction were composed of single crystals of hexagonal phase.

  • PDF

A Study of Hydroxyapatite Synthesis by Wet-direct and Hydrothermal Synthesis (습식 및 수열합성법에 의한 Hydroxyapatite의 합성에 관한 연구)

  • 전성용;김홍기;이경희;이병하
    • Journal of the Korean Ceramic Society
    • /
    • v.30 no.3
    • /
    • pp.215-221
    • /
    • 1993
  • The Hydroxyapatite powders were prepared by Wet-direct and Hydrothermal synthesis using Ca(NO3)2.4H2O and (NH4)2.HPO4.Stoichiometric and good cristalline HAp powders were obtained 9$0^{\circ}C$ by wet-direct process. The aspect ratio of HAp powders prepared by hydrothermal synthesis was increased with increasing synthetic temperature. The HAp particles obtained at 20$0^{\circ}C$ for 10hr were needle shaped ultra fine crystals, about 100nm in size. Small amount of TCP was obtained above 80$0^{\circ}C$ after heat-treatment of hydrothermally synthesized HAp but good crystalline HAp phase was maintained up to 120$0^{\circ}C$ as the primary phase.

  • PDF

Studies on hydrothermal synthetic conditions for preparation of PZT powders (PZT 분말 제조를 위한 수열합성 조건에 관한 연구)

  • 정성택;이기정;서경원
    • Journal of the Korean Crystal Growth and Crystal Technology
    • /
    • v.6 no.2
    • /
    • pp.254-262
    • /
    • 1996
  • $Pb(Zr_{0.52}Ti_{0.48})O_{3}$ (PZT) ceramics were prepared with uniform particle size of $1~3\;\mu\textrm{m}$ by hydrothermal synthesis at various conditions, such as hydrothermal reaction temperature, concentration of mineralizer and reaction time. PZT ceramics were formed above $180^{\circ}C$ for 2 hrs reaction using 10 M KOH solution as a mineralizer, but reaction condition was slightly different by starting materials. Morphology and characterization of PZT powders were investigated by XRD and SEM. By increasing the reaction temperature, KOH concentration and reaction time, the composition of the PZT phase tended to be homogeneous phase.

  • PDF

Morphological changes of $BaCO_3$ microcrystal with the synthetic conditions (합성조건에 따른 $BaCO_3$ 마이크로 결정의 형태 변화)

  • Choi, Eun-Jee;Huh, Young-Duk
    • Journal of the Korean Crystal Growth and Crystal Technology
    • /
    • v.19 no.5
    • /
    • pp.223-227
    • /
    • 2009
  • $BaCO_3$ crystals with various morphology were prepared using precipitation, hydrothermal and ligand-assisted methods. An irregular structure of $BaCO_3$ microparticle was obtained by simple precipitation method from $Ba(NO_3)_2$ and $Na_2CO_3$ in aqueous solution. Hexagonal pyramidals of $BaCO_3$ were synthesized using a hydrothermal method between $Ba(NO_3)_2$ and urea. Hexagonal rods of $BaCO_3$ were also synthesized using the ligand-assisted hydrothermal method. The aspect ratio of $BaCO_3$ hexagonal rods was increased with the concentration of ligand.

On the Possibility of Bulk Large Diamond Single Crystal Synthesis with Hydrothermal Process

  • Andrzej M. Szymanski
    • Journal of the Mineralogical Society of Korea
    • /
    • v.10 no.1
    • /
    • pp.18-32
    • /
    • 1997
  • Analysis of geological data, relating to occurrence and formation of diamonds as well as host rocks, inclined author to have different outlook on the diamond genesis and to establish a proposition on their formation at pneumatolytic-hydrothermal conditions near superficial Earth zones. Based on that theoretical foundations and experimental works, the first low-pressure and low-temperature hydrothermal diamond synthesis from water solution in pressure autoclave was executed. As a result, the natural diamond seed crystal grew bigger ad coupling of the synthetic diamond single-crystalline grains were obtained. SEM documentation proofs that parallely paragenetic crystallization of quartz and diamond, and nucleation of new octahedral diamond crystals brush take place on the seed crystal surface. Forecast of none times growth of diamond industrial application at 2000 and seventeen times at 2010 with reference to 1995, needs technology of large and pure single-crystals diamond synthesis. Growth of the stable and destressed diamond single-crystals in the pseudo-metastable diamond plot, may be realized with processes going through the long time and with participation of free radicals catalysts admixtures only. Sol-gel colloidal processes are an example of environment which form stable crystals in thermodynamically unstable conditions through a long time. Paper critically discusses a whole way of studies on the diamond synthesis, from high-pressure and high-temperature processes through chemical vapour deposition up to hydrothermal experiments.

  • PDF