• 제목/요약/키워드: Hydrothermal method

검색결과 630건 처리시간 0.03초

경기편마암 복합체의 Rb-Sr 연대측정연구 (Geochronological Study on Gyeonggi Massif in Korea Peninsula by the Rb-Sr Method)

  • Seung Hwan Choo;Dong Hak Kim;Won Mok Jae
    • Nuclear Engineering and Technology
    • /
    • 제15권1호
    • /
    • pp.23-32
    • /
    • 1983
  • 한반도에 분포하는 암석으로서 최고기의 암석으로 알려지고 있는 경기편마암 복합체중, 양평지역에 분포하는 우백질 편마암과 화강편마암류 및 시흥 지역에 분포하는 호상-안구상 편마암류를 대상으로 Rb-Sr법에 의한 암석 연대측정 연구를 실시하였다. 그 결과, 우백질 편마암과 호상-안구상 편마암류의 생성연대는 22억 내지 23억년으로 밝혀졌고, 화강편마암류의 관입시기는 14억년으로 측정되었다. 양평지역에서 채취한 시료중, 심하게 변질된 편마암류의 연대는 5억년이었다. 이 연대는 아마도 열수작용을 동반한 Caledonian조산운동의 시기와 밀접한 관계가 있을 것이다. 기타 여러지역에서 채취한 편마암류들에서 공통적으로 8-9억년의 년대가 측정된 것은 경기편마암 복합체가 받은 선캠브리아기의 화성 활동 혹은 광역변성 작용의 시기일 것으로 생각된다. 편마암류에서 분리한 흑운모는 시료 채취 지역에 다라 1억2천만년에서 2억7천만년으로 측정되었으며 이 연대는 본 지역에도 중생대 내지는 고생대 화성활동이 있었음을 뜻한다.

  • PDF

스폰지 복제법을 이용한 Ag 코팅 BCP 지지체의 제조 및 평가 (Fabrication and Characterization of Ag-coated BCP Scaffold Derived from Sponge Replica Process)

  • 김민성;김영희;송호연;민영기;이병택
    • 한국재료학회지
    • /
    • 제20권8호
    • /
    • pp.418-422
    • /
    • 2010
  • As a starting material, BCP (biphasic calcium phosphate) nano powder was synthesized by a hydrothermal microwave-assisted process. A highly porous BCP scaffold was fabricated by the sponge replica method using 60 ppi (pore per inch) of polyurethane sponge. The BCP scaffold had interconnected pores ranging from $100\;{\mu}m$ to $1000\;{\mu}m$, which were similar to natural cancellous bone. To realize the antibacterial property, a microwave-assisted nano Ag spot coating process was used. The morphology and distribution of nano Ag particles were different depending on the coating conditions, such as concentration of the $AgNO_3$ solution, microwave irradiation times, etc. With an increased microwave irradiation time, the amount of coated nano Ag particles increased. The surface of the BCP scaffold was totally covered with nano Ag particles homogeneously at 20 seconds of microwave irradiation time when 0.6 g of $AgNO_3$ was used. With an increased amount of $AgNO_3$ and irradiation time, the size of the coated particles increased. Antibacterial activities of the solution extracted from the Ag-coated BCP scaffold were examined against gram-negative (Escherichia coli) and gram-positive bacteria (Staphylococcus aureus). When 0.6 g of $AgNO_3$ was used for coating the Ag-coated scaffold, it showed higher antibacterial activities than that of the Ag-coated scaffold using 0.8 g of $AgNO_3$.

담지된 CTAB/MCM-41 and CTAB-Nafion/MCM-41 메조다공성 분자체의 제조 및 브롬화 반응에 사용 (Preparation of Supported CTAB/MCM-41 and CTAB-Nafion/MCM-41 Mesoporous Molecular Sieve and Their Use in the Brominating Reaction)

  • Hu, Guoqin;Li, Hua;Liu, Juan;Zhu, Jiang
    • 대한화학회지
    • /
    • 제55권4호
    • /
    • pp.691-696
    • /
    • 2011
  • CTAB 혹은 CTAB-나피온 촉매를 속빈 실리콘 튜브형 MCM-41에 담지시켰다. 이들 촉매들을 XRD, SEM, BET 등으로 분석하였다. 이들을 1,7-heptanediol 의 브롬화 반응 촉매로 사용하였고 다른 촉매들과 비교하였다. 이들 촉매들은 CTAB 보다 효과가 좋았으며 CTAB-Nafion/MCM-41 이 성능이 가장 우수하였다.

수열법에 의한 청색수정의 성장 (Growth of Blue Quartz by Hydrothermal Method)

  • 이영국;유영문;정석종;고재천;박로학
    • 한국결정학회지
    • /
    • 제8권1호
    • /
    • pp.15-19
    • /
    • 1997
  • 고온고압용 autoclave에서 $Na_2CO_3$를 광화제로 하여 청색수정 단결정을 수열성장하고, 성장온도와 코발트 함입량과의 관계를 고찰하였다. $5wt.\%$$Na_2CO_3$ 수열용액, $343^{\circ}C$의 성장온도, $22^{\circ}C$의 온도구배, 950기압의 조건에서 $100{\times}50{\times}35mm^3$ 크기의 청색수정을 성장하였으며, 성장속도는 0.55 mm/day였다. 가시영역에서의 흡수 스펙트럼을 측정한 결과 545, 570 및 643 nm 근처에서 흡수피크가 관찰되었다. 청색의 농도는 원료내 코발트의 농도와는 무관하며 성장온도와 밀접한 관계가 있음을 확인하였다.

  • PDF

Synthesis and Characterization of MoS2/Graphene-TiO2 Ternary Photocatalysts for High-Efficiency Hydrogen Production under Visible Light

  • Zhang, Feng-Jun;Kong, Cui;Li, Xuan;Sun, Xian-Yang;Xie, Wen-Jie;Oh, Won-Chun
    • 한국세라믹학회지
    • /
    • 제56권3호
    • /
    • pp.284-290
    • /
    • 2019
  • Ternary MoS2/graphene (G)-TiO2 photocatalysts were prepared by a simple hydrothermal method. The morphology, phase structure, band gap, and catalytic properties of the prepared samples were investigated by X-ray diffraction, Raman spectroscopy, scanning electron microscopy, UV-vis spectrophotometry, and Brunauer-Emmett-Teller surface area measurement. The H2 production efficiency of the prepared catalysts was tested in methanol-water mixture under visible light. MoS2/G-TiO2 exhibited the highest activity for photocatalytic H2 production. For 5 wt.% and 1 wt.% MoS2 and graphene (5MT-1G), the production rate of H2 was as high as 1989 µmol-1h-1. The catalyst 5MT-1G showed H2 production activity that was ~ 11.3, 5.6, and 4.1 times higher than those of pure TiO2, 1GT, and 5MT, respectively. The unique structure and morphology of the MoS2/G-TiO2 photocatalyst contributed to its improved hydrogen production efficiency under visible light.

TiO2 나노분말과 수산화알칼리와의 반응으로부터 티탄산 나노튜브의 형성과 나노구조의 전개 (Titanate Nanotube Formation and Nanostructure Development from the Reaction of TiO2 Nanopowder and Alkalihydroxide)

  • 진은주;류도형;허승헌;김창열;황해진
    • 한국분말재료학회지
    • /
    • 제15권2호
    • /
    • pp.125-135
    • /
    • 2008
  • [ $TiO_2$ ] nanotubes for photocatalytic application have been synthesized by hydrothermal method. $TiO_2$ nanotubes are formed by washing process after reaction in alkalic solution. Nanotubes with different morphology have been fabricated by changing NaOH concentration, temperature and time. $TiO_2$ nanoparticles were treated inside NaOH aqueous solution in a Teflon vessel at $110^{\circ}C$ for 20 h, after which they were washed with HCl aqueous solution and deionized water. Nanotube with the most perfect morphology was formed from 0.1 N HCl washing treatment. $TiO_2$ nanotube was also obtained when the precursor was washed with other washing solutions such as $NH_4OH$, NaCl, $K_2SO_4$, and $Na_2SO_3$. Therefore, it was suggested that $Na^+$ ion combined inside the precursor compound slowly comes out from the structure, leaving nanosheet morphology of $TiO_2$ compounds, which in turn become the nanotube in the presence of hydroxyl ion. To stabilize the sheet morphology, the different type of washing treatment solution might be considered such as amine class compounds.

Facile in situ Formation of CuO/ZnO p-n Heterojunction for Improved H2S-sensing Applications

  • Shanmugasundaram, Arunkumar;Kim, Dong-Su;Hou, Tian Feng;Lee, Dong Weon
    • 센서학회지
    • /
    • 제29권3호
    • /
    • pp.156-161
    • /
    • 2020
  • In this study, hierarchical mesoporous CuO spheres, ZnO flowers, and heterojunction CuO/ZnO nanostructures were fabricated via a facile hydrothermal method. The as-prepared materials were characterized in detail using various analytical methods such as powder X-ray diffraction, micro Raman spectroscopy, X-ray photoelectron spectroscopy, field-emission scanning electron microscopy, and transmission electron microscopy. The obtained results are consistent with each other. The H2S-sensing characteristics of the sensors fabricated based on the CuO spheres, ZnO flowers, and CuO/ZnO heterojunction were investigated at different temperatures and gas concentrations. The sensor based on ZnO flowers showed a maximum response of ~141 at 225 ℃. The sensor based on CuO spheres exhibited a maximum response of 218 at 175 ℃, whereas the sensor based on the CuO/ZnO nano-heterostructure composite showed a maximum response of 344 at 150 ℃. The detection limit (DL) of the sensor based on the CuO/ZnO heterojunction was ~120 ppb at 150 ℃. The CuO/ZnO sensor showed the maximum response to H2S compared with other interfering gases such as ethanol, methanol, and CO, indicating its high selectivity.

하이퍼써미아 응용을 위한 하이브리드 에어로젤 내 분산된 마그네타이트 나노입자 (Magnetite Nanoparticles Dispersed in Hybrid Aerogel for Hyperthermia Application)

  • 이은희;좌용호;김창열
    • 한국재료학회지
    • /
    • 제22권7호
    • /
    • pp.362-367
    • /
    • 2012
  • Magnetite nanoparticles(NPs) have been the subject of much interest by researchers owing to their potential use as magnetic carriers in drug targeting and as a tumor treatment in cases of hyperthermia. However, magnetite nanoparticles with 10 nm in diameter easily aggregate and thus create large secondary particles. To disperse magnetite nanoparticles, this study proposes the infiltration of magnetite nanoparticles into hybrid silica aerogels. The feasible dispersion of magnetite is necessary to target tumor cells and to treat hyperthermia. Magnetite NPs have been synthesized by coprecipitation, hydrothermal and thermal decomposition methods. In particular, monodisperse magnetite NPs are known to be produced by the thermal decomposition of iron oleate. In this study, we thermally decomposed iron acetylacetonate in the presence of oleic acid, oleylamine and 1,2 hexadecanediol. We also attempted to disperse magnetite NPs within a mesoporous aerogels. Methyltriethoxysilicate(MTEOS)-based hybrid silica aerogels were synthesized by a supercritical drying method. To incorporate the magnetite nanoparticles into the hybrid aerogels, we devised two methods: adding the synthesized aerogel into a magnetite precursor solution followed by nucleation and crystal growth within the pores of the aerogels, and the infiltration of magnetite nanoparticles synthesized beforehand into aerogel matrices by immersing the aerogels in a magnetite nanoparticle colloid solution. An analysis using a vibrating sample magnetometer showed that approximately 20% of the magnetite nanoparticles were well dispersed in the aerogels. The composite samples showed that heating under an inductive magnetic field to a temperature of $45^{\circ}C$ is possible.

LTCC 를 이용한 SnO2 가스 센서 ([ SnO2 ] Gas Sensors Using LTCC (Low Temperature Co-fired Ceramics))

  • 조평석;강종윤;김선중;김진상;윤석진;;이종흔
    • 한국재료학회지
    • /
    • 제18권2호
    • /
    • pp.69-72
    • /
    • 2008
  • A sensor element array for combinatorial solution deposition research was fabricated using LTCC (Low-temperature Co-fired Ceramics). The designed LTCC was co-fired at $800^{\circ}C$ for 1 hour after lamination at $70^{\circ}C$ under 3000 psi for 30 minutes. $SnO_2$ sol was prepared by a hydrothermal method at $200^{\circ}C$ for 3 hours. Tin chloride and ammonium carbonate were used as raw materials and the ammonia solution was added to a Teflon jar. 20 droplets of $SnO_2$ sol were deposited onto a LTCC sensor element and this was heat treated at $600^{\circ}C$ for 5 hours. The gas sensitivity ($S\;=\;R_a/R_g$) values of the $SnO_2$ sensor and 0.04 wt% Pd-added $SnO_2$ sensor were measured. The 0.04 wt% Pd-added $SnO_2$ sensor showed higher sensitivity (S = 8.1) compared to the $SnO_2$ sensor (S = 5.95) to 200 ppm $CH_3COCH_3$ at $400^{\circ}C$.

Construction of Strontium Titanate/Binary Metal Sulfide Heterojunction Photocatalysts for Enhanced Visible-Light-Driven Photocatalytic Activity

  • Yu, Yongwei;Yang, Qing;Ma, Jiangquan;Sun, Wenliang;Yin, Chong;Li, Xiazhang;Guo, Jun;Jiang, Qingyan;Lu, Zhiyuan
    • Nano
    • /
    • 제13권11호
    • /
    • pp.1850130.1-1850130.12
    • /
    • 2018
  • A novel strontium titanate/binary metal sulfide ($SrTiO_3/SnCoS_4$) heterostructure was synthesized by a simple two-step hydrothermal method. The visible-light-driven photocatalytic performance of $SrTiO_3/SnCoS_4$ composites was evaluated in the degradation of methyl orange (MO) under visible light irradiation. The photocatalytic performance of $SrTiO_3/SnCoS_4-5%$ is much higher than that of pure $SrTiO_3$, $SnCoS_4$, $SrTiO_3/SnS_2$ and $SrTiO_3/CoS_2$. The $SrTiO_3/SnCoS_4$ composite material with 5 wt.% of $SnCoS_4$ showed the highest photocatalytic efficiency for MO degradation, and the degradation rate could reach 95% after 140 min irradiation time. The enhanced photocatalytic activity was ascribed to not only the improvement of visible light absorption efficiency, but also the construction of a heterostructure which make it possible to effectively separate photoexcited electrons and holes in the two-phase interface.