DOI QR코드

DOI QR Code

Construction of Strontium Titanate/Binary Metal Sulfide Heterojunction Photocatalysts for Enhanced Visible-Light-Driven Photocatalytic Activity

  • Yu, Yongwei (Advanced Catalysis and Green Manufacturing Collaborative Innovation Center School of Petrochemical Engineering, Changzhou University) ;
  • Yang, Qing (Advanced Catalysis and Green Manufacturing Collaborative Innovation Center School of Petrochemical Engineering, Changzhou University) ;
  • Ma, Jiangquan (Advanced Catalysis and Green Manufacturing Collaborative Innovation Center School of Petrochemical Engineering, Changzhou University) ;
  • Sun, Wenliang (Advanced Catalysis and Green Manufacturing Collaborative Innovation Center School of Petrochemical Engineering, Changzhou University) ;
  • Yin, Chong (Advanced Catalysis and Green Manufacturing Collaborative Innovation Center School of Petrochemical Engineering, Changzhou University) ;
  • Li, Xiazhang (Advanced Catalysis and Green Manufacturing Collaborative Innovation Center School of Petrochemical Engineering, Changzhou University) ;
  • Guo, Jun (Advanced Catalysis and Green Manufacturing Collaborative Innovation Center School of Petrochemical Engineering, Changzhou University) ;
  • Jiang, Qingyan (Advanced Catalysis and Green Manufacturing Collaborative Innovation Center School of Petrochemical Engineering, Changzhou University) ;
  • Lu, Zhiyuan (Advanced Catalysis and Green Manufacturing Collaborative Innovation Center School of Petrochemical Engineering, Changzhou University)
  • Received : 2018.07.12
  • Accepted : 2018.10.05
  • Published : 2018.11.30

Abstract

A novel strontium titanate/binary metal sulfide ($SrTiO_3/SnCoS_4$) heterostructure was synthesized by a simple two-step hydrothermal method. The visible-light-driven photocatalytic performance of $SrTiO_3/SnCoS_4$ composites was evaluated in the degradation of methyl orange (MO) under visible light irradiation. The photocatalytic performance of $SrTiO_3/SnCoS_4-5%$ is much higher than that of pure $SrTiO_3$, $SnCoS_4$, $SrTiO_3/SnS_2$ and $SrTiO_3/CoS_2$. The $SrTiO_3/SnCoS_4$ composite material with 5 wt.% of $SnCoS_4$ showed the highest photocatalytic efficiency for MO degradation, and the degradation rate could reach 95% after 140 min irradiation time. The enhanced photocatalytic activity was ascribed to not only the improvement of visible light absorption efficiency, but also the construction of a heterostructure which make it possible to effectively separate photoexcited electrons and holes in the two-phase interface.

Keywords

Acknowledgement

Supported by : National Natural Science Foundation of China

References

  1. S. Ameen, M. S. Akhtar, Y. S. Kim and H. S. Shin, Appl. Catal. B Environ. 103, 136 (2011). https://doi.org/10.1016/j.apcatb.2011.01.019
  2. Z. Yu, F. Qu and X. Wu, Dalton Trans. 43, 4847 (2014). https://doi.org/10.1039/C3DT53256A
  3. X. Wen, C. Niu, L. Zhang, C. Liang, H. Guo and G. Zeng, J. Catal. 358, 141 (2018). https://doi.org/10.1016/j.jcat.2017.11.029
  4. W. Chen, H. Liu, X. Li, S. Liu, L. Gao, L. Mao, Z. Fan, W. Shangguan, W. Fang and Y. Liu, Appl. Catal. B Environ. 192, 145 (2016). https://doi.org/10.1016/j.apcatb.2016.03.057
  5. C. Liang, C. Niu, H. Guo, D. Huang, X. Wen, S. Yang and G. Zeng, Catal. Sci. Technol. 8, 1161 (2018). https://doi.org/10.1039/C7CY02190A
  6. T. Ohno, T. Tsubota, Y. Nakamura and K. Sayama, Appl. Catal. A Gen. 288, 74 (2005). https://doi.org/10.1016/j.apcata.2005.04.035
  7. T. Xian, H. Yang, L. J. Di and J. F. Dai, Phys. Scr. 90, 055801 (2015). https://doi.org/10.1088/0031-8949/90/5/055801
  8. D. Lu, S. Ouyang, H. Xu, D. Li, X. Zhang, Y. Li and J. Ye, ACS Appl. Mater. Interfaces 8, 9506 (2016). https://doi.org/10.1021/acsami.6b00889
  9. F. Zou, Z. Jiang, X. Qin, Y. Zhao, L. Jiang, J. Zhi, T. Xiao and P. P. Edwards, Chem. Commun. 48, 8514 (2012). https://doi.org/10.1039/c2cc33797e
  10. R. Asai, H. Nemoto, Q. Jia, K. Saito, A. Iwase and A. Kudo, Chem. Commun. 50, 2543 (2014). https://doi.org/10.1039/C3CC49279F
  11. Y. Yang, W. Zheng, D. Cheng and D. Cao, Sustain. Energy Fuels 1, 1968 (2017). https://doi.org/10.1039/C7SE00219J
  12. X. L. Luo, G. L. He, Y. P. Fang and Y. H. Xu, J. Colloid Interface Sci. 518, 184 (2018). https://doi.org/10.1016/j.jcis.2018.02.038
  13. Y. Zhang, Q. Ji, G. F. Han, J. Ju, J. Shi, D. Ma, J. Sun, Y. Zhang, M. Li, X. Y. Lang, Y. Zhang and Z. Liu, ACS Nano 8, 8617 (2014). https://doi.org/10.1021/nn503412w
  14. Q. Xiang, J. Yu and M. Jaroniec, J. Am. Chem. Soc. 134, 6575 (2012). https://doi.org/10.1021/ja302846n
  15. G. Wu, L. Xiao, W. Gu, W. Shi, D. Jiang and C. Liu, RSC Adv. 6, 19878 (2016). https://doi.org/10.1039/C5RA21651F
  16. H. Che, J. Chen, K. Huang, W. Hu, H. Hu, X. Liu, G. Che, C. Liu and W. Shi, J. Alloys Compd. 688, 882 (2016). https://doi.org/10.1016/j.jallcom.2016.07.311
  17. X. Wen, C. Niu, L. Zhang, C. Liang and G. Zeng, J. Catal. 356, 283 (2017). https://doi.org/10.1016/j.jcat.2017.10.022
  18. S. Yang, C. Niu, D. Huang, H. Zhang, C. Liang and G. Zeng, Environ. Sci. Nano 4, 585 (2017). https://doi.org/10.1039/C6EN00597G
  19. Y. J. Yuan, D. Q. Chen, X. F. Shi, J. R. Tu, B. Hu, L. X. Yang, Z. T. Yu and Z. G. Zou, Chem. Eng. J. 313, 1438 (2017). https://doi.org/10.1016/j.cej.2016.11.049
  20. M. S. Faber, M. A. Lukowski, Q. Ding, N. S. Kaiser and S. Jin, J. Phys. Chem. C 118, 21347 (2014). https://doi.org/10.1021/jp506288w
  21. W. Zhou, Z. Yin, Y. Du, X. Huang, Z. Zeng, Z. Fan, H. Liu, J. Wang and H. Zhang, Small 9, 140 (2013). https://doi.org/10.1002/smll.201201161
  22. W. Tian, Q. Shen, N. Li and J. Zhou, RSC Adv. 6, 25568 (2016). https://doi.org/10.1039/C6RA01429A
  23. Q. Liang, J. Jin, M. Zhang, C. Liu, S. Xu, C. Yao and Z. Li, Appl. Catal. B Environ. 218, 545 (2017). https://doi.org/10.1016/j.apcatb.2017.07.003
  24. S. I. Suarez-Vazquez, S. Gil, J. M. Garcia-Vargas, A. Cruz-Lopez and A. Giroir-Fendler, Appl. Catal. B Environ. 223, 201 (2018). https://doi.org/10.1016/j.apcatb.2017.04.042
  25. J. Ye, T. Chen, Q. Chen, W. Chen, Z. Yu and S. Xu, J. Mater. Chem. A 4, 13194-13202 (2016). https://doi.org/10.1039/C6TA04196E
  26. J. Liu, L. Zhang, N. Li, Q. Tian, J. Zhou and Y. Sun, J. Mater. Chem. A 3, 706 (2015). https://doi.org/10.1039/C4TA04984E
  27. J. Yu, C. Y. Xu, F. X. Ma, S. P. Hu, Y. W. Zhang and L. Zhen, ACS Appl. Mater. Interfaces 6, 22370 (2014). https://doi.org/10.1021/am506396z
  28. P. Ganesan, M. Prabu, J. Sanetuntikul and S. Shanmugam, ACS Catal. 5, 3625 (2015). https://doi.org/10.1021/acscatal.5b00154
  29. Y. Zhang, F. Zhang, Z. Yang, H. Xue and D. D. Dionysiou, J. Catal. 344, 692 (2016). https://doi.org/10.1016/j.jcat.2016.10.022
  30. L. Zhu, D. Susac, M. Teo, K. C. Wong, P. C. Wong, R. R. Parsons, D. Bizzotto, K. A. R. Mitchell and S. A. Campbell, J. Catal. 258, 235 (2008). https://doi.org/10.1016/j.jcat.2008.06.016
  31. D. C. Higgins, F. M. Hassan, M. H. Seo, J. Y. Choi, M. A. Hoque, D. U. Lee and Z. Chen, J. Mater. Chem. A 3, 6340 (2015). https://doi.org/10.1039/C4TA06667G
  32. G. Wu, P. Li, D. Xu, B. Luo, Y. Hong, W. Shi and C. Liu, Appl. Surf. Sci. 333, 39 (2015). https://doi.org/10.1016/j.apsusc.2015.02.008
  33. X. Wen, C. Niu, L. Zhang, C. Liang and G. Zeng, Appl. Catal. B Environ. 221, 701 (2018). https://doi.org/10.1016/j.apcatb.2017.09.060
  34. X. Wen, C. Niu, M. Ruan, L. Zhang and G. Zeng, J. Colloid Interface Sci. 497, 368 (2017). https://doi.org/10.1016/j.jcis.2017.03.029
  35. X. Zhou, J. Yao, M. Yang, J. Ma, Q. Zhou, E. Ou, Z. Zhang and X. Sun, Nano 13, 1850038 (2018). https://doi.org/10.1142/S1793292018500388