• Title/Summary/Keyword: Hydrothermal crystallization

Search Result 54, Processing Time 0.028 seconds

Studies on Synthesis of X-type Zeolite from the Natural Mordenite (천연 Mordenite로부터 X-형 제올라이트 합성에 관한 연구)

  • 이미재;조재훈;허혜경;최병현
    • Journal of the Korean Ceramic Society
    • /
    • v.31 no.12
    • /
    • pp.1570-1576
    • /
    • 1994
  • Effect of Na2O/SiO2 molar ratio, calcining temperature and addition of NaCl were investigated on the hydrothermal formation of X-type zeolite from the natural mordenite, which is a kind of rock deposited abundantly in kuryong po. Pulverized mordenite was first mixed with NaOH or NaOH-NaCl solution, and crystallized under hydrothermal condition at 90~10$0^{\circ}C$ for 10 hrs. Optimum condition for synthesis of the X-type zeolite were \circled1 the ratio Na2O/SiO2, NaCl/Al2O3 and H2O/Na2O:0.68, 11.4 and 40, respectively, \circled2 calcining temperature of starting materials: 90$0^{\circ}C$, \circled3 aging time: 48 hrs. and \circled4 crystallization temperature: 10$0^{\circ}C$. The yield of X-type zeolite under the optimum condition was about 55~60%, and the major crystallized X-type zeolite was faujasite phase. Zeolite of then type X was crystallized when NaCl was added to treating solution with in the limit 14.25 of NaCl/Al2O3 molar ratio. As the calcination temperature (from 50$0^{\circ}C$ to 95$0^{\circ}C$) of starting materials increases, yield of zeolite x increase.

  • PDF

Non-blinking dendritic crystals from C-dot solution

  • Mewada, Ashmi;Vishwakarma, Ritesh;Patil, Bhushan;Phadke, Chinmay;Kalita, Golap;Sharon, Maheshwar;Sharon, Madhuri
    • Carbon letters
    • /
    • v.16 no.3
    • /
    • pp.211-214
    • /
    • 2015
  • Bio-imaging and drug carriers for delivery have created a huge demand for crystals. Crystals are fascinating materials that have been grown for a long time but obtaining biocompatible fluorescent crystals is a challenging task. We report on the growth of fluorescent crystals using a carbon dot (C-dot) solution by a hydrothermal process. The crystallization pattern of these C-dots exhibited a unique dendritic structure having a feather-like morphology. The growth temperature and pressure were maintained at 60℃ and 200 mmHg, respectively, for crystal growth. A green fluorescence (under UV light) that was observed in the C-dot solution was retained in the crystals formed from the solution. Cytotoxicity studies on Vero cells revealed the crystals to be extremely biocompatible. These fluorescent crystals are extremely well suited for biomedical and optoelectronic applications.

Transformation of TiO2 Film to Titanate Nanotube Thin Film Using Hydrothermal Method

  • Guo, Yupeng;Lee, Nam-Hee;Oh, Hyo-Jin;Yoon, Cho-Rong;Kim, Sun-Jae
    • Proceedings of the Korean Institute of Surface Engineering Conference
    • /
    • 2007.04a
    • /
    • pp.147-148
    • /
    • 2007
  • In this study, the technology to grow oriented nanotube thin film from dip-coated $TiO_2$ using hydrothermal method has been successfully developed. The effects of preparation parameters, such as reaction temperature, duration and post treatment conditions on the film morphologies and the adherence to the substrate, have been examined. A general formation mechanism of oriented titanate nanotube thin film is proposed in terms of the detailed observation of the products via two dimensional surface FESEM studies and HRTEM images. The overall formation of $TiO_2-based$ nanotube thin film can be summarized with three successive steps: (1) $TiO_2$ dissolving and amorphous $Na_2TiO_3$ deposition process; (2) layered $Na_2Ti_3O_7$ formation via spontaneous crystallization and rapid growth process; (3) formation of nanotube thin film via $Na_2Ti_3O_7$ splitting and multilayer scrolling process of (100) planes around the c axis of $Na_2Ti_3O_7$.

  • PDF

Mechanisms of Formation of Manganese Oxide Minerals in the Manganese Deposits of the Taebaeg Mt. Region, Korea (太白山地區 망간鑛床에 있어서 酸化망간鑛物의 生成機構)

  • Kim, Soo-Jin;Cho, Hyen-Goo;Choi, Hun-Soo
    • Journal of the Mineralogical Society of Korea
    • /
    • v.5 no.1
    • /
    • pp.1-5
    • /
    • 1992
  • The manganese oxide ores in the Taebaeg Mt. region have been formed by supergene weathering of the primary hydrothermal or sedimentary manganese ores. The supergenesis is controlled by the physical chemistry of the descending groundwater in the supergene zone. It includes the fundamental geological processes, such as dissolution, oxidation, transportation, precipitation, and crystallization and recrystallization. However, the fundamental mechanisms for the formation of various manganese oxide minerals are 1) replacement, 2) precipitation from solution, and 3) solid state crystallization and recrystallization. Various textures and structures of ores have been formed by these processes. Detailed paragenetic sequence of manganese oxide minerals in each ore deposit is summerized.

  • PDF

A Fluid inclusion study of the Sannae granite and the associated Sannae W-Mo deposit, Southeastern Kyongsang Basin (경상분지 남동부의 산내화강암과 산내 W-MO 광상에 관한 유체포유물 연구)

  • 양경희;이준동
    • The Journal of the Petrological Society of Korea
    • /
    • v.8 no.1
    • /
    • pp.46-55
    • /
    • 1999
  • Fluid inclusions in granite and hydrothermal quartz indicate that three fluids have affected the Sannae granite. The earliest fluid is represented by three-phase aqueous fluid inclusions with high salinity (38 to 46 wt.% NaCl equiv.). It was exsolves from a crystallizing melt and trapped at a relatively high-pressure condition. The secong fluid is represented by two-phase aqueous fluid inclusion with low entectic temperatures (< $-40^{\circ}C$). low- to moderate salinity (3 to 24.0 wt.% NaCl equiv.) and high homogenization temperatures$ ($309^{\circ}C$$473^{\circ}C$)($. This fluid was trapped at higher pressures than 300-500 bars and precipitated molybdenite and wolframite in quartz veins. It was probably generted by fluid-host rock interactions since they show a wide range of salinity within a narrow range of homogenization temperatures. The final fluid is represented by an aquenous fluid boiling that separated into high-salinity (34-38 wt.% NaCl equiv.) and low-salinity fluid (0 to 8.7 wt.%) at $303-376^{\circ}C$ and 50-150 bars. These boiling fluids precipitated euhedral quartz in miarolitic cavities. The compositions of the final fluid was rather complex in the $H_2$O-NaCl-KCI-$FeCl_2$ system. The Sannae granite was a locus for repeated fluid events including magmatic fluids during the final stage of crystallization, the convection of hydrothermal fluids causing a fluid ascending, fluid boiling, and the local W-Mo mineralization and formation of miarolitic cavities due to thermal, tectonic and compositional properties of the felsic granite.

  • PDF

Corrosive Degradation of MgO/Al2O3-Added Si3N4 Ceramics under a Hydrothermal Condition (MgO/Al2O3가 소결조제로 첨가된 Si3N4 세라믹스의 수열 조건에서의 부식열화 거동)

  • Kim, Weon-Ju;Kang, Seok-Min;Park, Ji-Yeon
    • Korean Journal of Materials Research
    • /
    • v.17 no.7
    • /
    • pp.366-370
    • /
    • 2007
  • Silicon nitride ($Si_3N_4$) ceramics have been considered for various components of nuclear power plants such as the mechanical seal of a reactor coolant pump (RCP), the guide roller for a control rod drive mechanism (CRDM), and a seal support, etc. Corrosion behavior of $Si_3N_4$ ceramics in a high-temperature and high-pressure water must be elucidated before they can be considered as components for nuclear power plants. In this study, the corrosion behaviors of $Si_3N_4$ ceramics containing MgO and $Al_2O_3$ as sintering aids were investigated at a hydrothermal condition ($300^{\circ}C$, 9.0 MPa) in pure water and 35 ppm LiOH solution. The corrosion reactions were controlled by a diffusion of the reactive species and/or products through the corroded layer. The grain-boundary phase was preferentially corroded in pure water whereas the $Si_3N_4$ grain seemed to be corroded at a similar rate to the grain-boundary phase in LiOH solution. Flexural strengths of the $Si_3N_4$ ceramics were significantly degraded due to the corrosion reaction. Results of this study imply that a variation of the sintering aids and/or a control (e.g., crystallization) of the grain-boundary phase are necessary to increase the corrosion resistance of $Si_3N_4$ ceramics in a high-temperature water.

Preparation of Ni(OH)2 Hollow Spheres by Solvent Displacement Crystallization Using Micro-Injection Device (마이크로 주입장치를 이용한 용매치환결정화에 의한 중공상 수산화니켈 분말의 제조)

  • Kim, Seiki;Park, Kyungsoo;Jung, Kwang-Il
    • Journal of Powder Materials
    • /
    • v.23 no.4
    • /
    • pp.311-316
    • /
    • 2016
  • $Ni(OH)_2$ hollow spheres have been prepared by solvent displacement crystallization using a micro-injection device, and the effect of process parameters such as concentration and the relative ratio of the injection speed of the precursor solution, which is an aqueous solution of $NiSO_4{\cdot}6H_2O$, to isopropyl alcohol of displacement solvent have been investigated. The crystal phases after NaOH treatment are in the ${\beta}-phase$ for all process parameters. A higher concentration of $NiSO_4{\cdot}6H_2O$ aqueous solution is injected by a micro-injection device and bigger $Ni(OH)_2$ hollow spheres with a narrower particle size distribution are formed. The crystallinity and hardness of the as-obtained powder are so poor that hydrothermal treatment of the as-obtained $Ni(OH)_2$ at $120^{\circ}C$ for 24 h in distilled water is performed in order to greatly improve the crystallinity. It is thought that a relative ratio of the injection speed of $NiSO_4{\cdot}6H_2O$ to that of isopropyl alcohol of at least more than 1 is preferable to synthesize Ni(OH)2 hollow spheres. It is confirmed that this solution-based process is very effective in synthesizing ceramic hollow spheres by simple adjustment of the process parameters such as the concentration and the injection speed.

The Microstructure and Mechanical Properties of Fiber Reinforced Calcium Silicate Hydrates (섬유보강 규산칼슘수화물 경화체의 미세조직과 기계적 특성)

  • 엄태선;최상흘
    • Journal of the Korean Ceramic Society
    • /
    • v.34 no.5
    • /
    • pp.491-499
    • /
    • 1997
  • High flexible lightweight composites containing tobermorite as a main mineral is produced using various amorphous silicates, lime, cement and fibers. Here, Mechanical properties of the composites were studied by observing microstructures of hydrates and fibers. Amorphous silicates having better hydraulicity retarded the crystallization of tobermorite due to better formation of C-S-H gel in water bath curing, but, difficult conversion from C-S-H gel to tobermorite in hydrothermal reaction. In the low molar ratio of CaO/SiO2 (0.67), faster crystalization was observed dued to more impurities such as Al2O3 alkali, resulting in improving mechanical properties due to small crystal size and many contact points. It was identified that a lot of calcium silicate hydates formed at surface of pulps increase bonding strength and the crack-resistance of matrix in the composites, but decrease hardness and compressive strength. The choice of amorpous silicates having better hydraulicity, low CaO/SiO2 adding each fibers bellow about 5% in the raw mixs and lower molding pressure should be needed at improve mechanical properties of composites.

  • PDF

Geochemistry of Uranium and Thorium Deposits from the Kyemyeongsan Pegmatite (계명산층 페그마타이트에 수반되는 우라늄·토륨 광상의 지구화학적 특성)

  • Park, Maeng-Eon;Kim, Gun-Soo
    • Economic and Environmental Geology
    • /
    • v.31 no.5
    • /
    • pp.365-374
    • /
    • 1998
  • Economic U- and Th-bearing pegmatite deposits occur in the Kyemyeongsan Formation, and are spatially closely associated with the Carboniferous alkali granite. The pegmatite is lithochemically alkaline and peralumious, and consists mainly of potassic feldspar and quartz with allanite and U- and Th-bearing minerals. Paragenetic stages of mineralization in the pegmatite are divided as follows: early silicate mineralization, main rare metal mineralization, and late silicate mineralization. Thorite, euxenite, fergusonite and uranpyrochlore are the predominant U- and Th-bearing minerals. Both the enrichments of Nb, Y, Th, U, and Ta and the depletions of Hf, Ba, and Rb in the pegmatite were resulted from magmatic differentiation. The increases of Na and Ca in uranpyrochlore, of Th and U in fergusonite, of Si, Th, U and Pb in thorite, and of Nb and Y in euxenite were possibly resulted from both later internal fractionation and hydrothermal alteration. The variation of chemical composition in a mineral species reflects the different pysico-chemical conditions during the crystallization.

  • PDF

Fabrication of ZnO incorporated TMA-A zeolite nanocrystals (ZnO를 담지한 TMA-A 제올라이트 나노결정의 제조)

  • Lee, Seok-Ju;Lim, Chang-Sung;Kim, Ik-Jin
    • Journal of the Korean Crystal Growth and Crystal Technology
    • /
    • v.17 no.6
    • /
    • pp.238-244
    • /
    • 2007
  • Nano-sized ZnO crystals were successfully incorporated using ion exchange method in TMA-A zeolite synthesized by the hydrothermal method. The optimal composition for the synthesis of TMA-A zeolite was resulted in a solution of $Al(i-pro)_3$:2.2 TEOS:2.4 TMAOH:0.3 NaOH:200 $H_2O$. 0.3g of TMA-A zeolite and 5mol of $ZnCl_2$ solution were employed for the preparation of ZnO incorporated TMA-A zeolite. The ZnO incorporated TMA-A zeolite precursors, prepared from the process of mixing, stirring, centrifugal separation and drying, were calcined at temperatures from 400 to $600^{\circ}C$ for 3 h. The crystallization process of ZnO incorporated TMA-A zeolite was analyzed by X-ray diffraction (XRD). The Brunaur-Emett-Teller (BET) surface area of the ZnO incorporated TMA-A zeolite was measured. Subsequently, the morphology and the particle size depending on the temperature and time were observed using scanning electron microscopy(SEM), transmission electron microscopy(TEM) and particle size analyzer.