Browse > Article
http://dx.doi.org/10.5714/CL.2015.16.3.211

Non-blinking dendritic crystals from C-dot solution  

Mewada, Ashmi (N. S. N. Research Centre for Nanotechnology and Bio-nanotechnology)
Vishwakarma, Ritesh (N. S. N. Research Centre for Nanotechnology and Bio-nanotechnology)
Patil, Bhushan (N. S. N. Research Centre for Nanotechnology and Bio-nanotechnology)
Phadke, Chinmay (N. S. N. Research Centre for Nanotechnology and Bio-nanotechnology)
Kalita, Golap (Nagoya Institute of Technology)
Sharon, Maheshwar (N. S. N. Research Centre for Nanotechnology and Bio-nanotechnology)
Sharon, Madhuri (N. S. N. Research Centre for Nanotechnology and Bio-nanotechnology)
Publication Information
Carbon letters / v.16, no.3, 2015 , pp. 211-214 More about this Journal
Abstract
Bio-imaging and drug carriers for delivery have created a huge demand for crystals. Crystals are fascinating materials that have been grown for a long time but obtaining biocompatible fluorescent crystals is a challenging task. We report on the growth of fluorescent crystals using a carbon dot (C-dot) solution by a hydrothermal process. The crystallization pattern of these C-dots exhibited a unique dendritic structure having a feather-like morphology. The growth temperature and pressure were maintained at 60℃ and 200 mmHg, respectively, for crystal growth. A green fluorescence (under UV light) that was observed in the C-dot solution was retained in the crystals formed from the solution. Cytotoxicity studies on Vero cells revealed the crystals to be extremely biocompatible. These fluorescent crystals are extremely well suited for biomedical and optoelectronic applications.
Keywords
carbon dots; fluorescence; crystal morphology; dendrites; hydrothermal crystal growth;
Citations & Related Records
연도 인용수 순위
  • Reference
1 Bourlinos AB, Stassinopoulos A, Anglos D, Zboril R, Karakassides M, Giannelis EP. Surface functionalized carbogenic quantum dots. Small, 4, 455 (2008). http://dx.doi.org/10.1002/smll.200700578.   DOI
2 Vekilov PG. The two-step mechanism of nucleation of crystals in solution. Nanoscale, 2, 2346 (2010). http://dx.doi.org/10.1039/C0NR00628A.   DOI
3 Baker SN, Baker GA. Luminescent carbon nanodots: emergent nanolights. Angew Chem Int Ed, 49, 6726 (2010). http://dx.doi.org/10.1002/anie.200906623.   DOI
4 Song Y, Shi W, Chen W, Li X, Ma H. Fluorescent carbon nanodots conjugated with folic acid for distinguishing folate-receptor-positive cancer cells from normal cells. J Mater Chem, 22, 12568 (2012). http://dx.doi.org/10.1039/C2JM31582C.   DOI
5 Wang X, Cao L, Lu F, Meziani MJ, Li H, Qi G, Zhou B, Har ruff BA, Kermarrec F, Sun YP. Photoinduced electron transfers with carbon dots. Chem Commun, 3774 (2009). http://dx.doi.org/10.1039/B906252A.   DOI
6 Ray SC, Saha A, Jana NR, Sarkar R. Fluorescent carbon nanoparticles: synthesis, characterization, and bioimaging application. J Phys Chem C, 113, 18546 (2009). http://dx.doi.org/10.1021/jp905912n.   DOI
7 Land TA, De Yoreo JJ, Lee JD. An in-situ AFM investigation of canavalin crystallization kinetics. Surf Sci, 384, 136 (1997). http://dx.doi.org/10.1016/S0039-6028(97)00187-8.   DOI
8 Gentili D, Foschi G, Valle F, Cavallini M, Biscarini F. Applications of dewetting in micro and nanotechnology. Chem Soc Rev, 41, 4430 (2012). http://dx.doi.org/10.1039/C2CS35040H.   DOI
9 Mewada A, Pandey S, Thakur M, Jadhav D, Sharon M. Swarming carbon dots for folic acid mediated delivery of doxorubicin and biological imaging. J Mater Chem B, 2, 698 (2014). http://dx.doi.org/10.1039/C3TB21436B.   DOI
10 Pandey S, Mewada A, Oza G, Thakur M, Mishra N, Sharon M, Sharon M. Synthesis and centrifugal separation of fluorescent carbon dots at room temperature. Nanosci Nanotechnol Lett, 5, 775 (2013). http://dx.doi.org/10.1166/nnl.2013.1617.   DOI
11 Auer S, Frenkel D. Suppression of crystal nucleation in polydisperse colloids due to increase of the surface free energy. Nature, 413, 711 (2001). http://dx.doi.org/10.1038/35099513.   DOI
12 Pandey S, Mewada A, Thakur M, Tank A, Sharon M. Cysteamine hydrochloride protected carbon dots as a vehicle for the efficient release of the anti-schizophrenic drug haloperidol. RSC Adv, 3, 26290 (2013). http://dx.doi.org/10.1039/C3RA42139B.   DOI
13 Bruchez M, Moronne M, Gin P, Weiss S, Alivisatos AP. Semiconductor nanocrystals as fluorescent biological labels. Science, 281, 2013 (1998). http://dx.doi.org/10.1126/science.281.5385.2013.   DOI
14 Welsher K, Liu Z, Daranciang D, Dai H. Selective probing and imaging of cells with single walled carbon nanotubes as near-infrared fluorescent molecules. Nano Lett, 8, 586 (2008). http://dx.doi.org/10.1021/nl072949q.   DOI
15 Esteves da Silva JCG, Gonçalves HMR. Analytical and bioanalytical applications of carbon dots. TrAC Trends Anal Chem, 30, 1327 (2011). http://dx.doi.org/10.1016/j.trac.2011.04.009.   DOI
16 Jazbinsek M, Mutter L, Gunter P. Photonic applications with the organic nonlinear optical crystal DAST. IEEE J Sel Topics Quantum Electron, 14, 1298 (2008). http://dx.doi.org/10.1109/JSTQE.2008.921407.   DOI
17 Lu Y, Zhao J, Zhang R, Liu Y, Liu D, Goldys EM, Yang X, Xi P, Sunna A, Lu J, Shi Y, Leif RC, Huo Y, Shen J, Piper JA, Robinson JP, Jin D. Tunable lifetime multiplexing using luminescent nanocrystals. Nat Photon, 8, 32 (2014). http://dx.doi.org/10.1038/nphoton.2013.322.   DOI
18 Frascella F, Ricciardi S, Rivolo P, Moi V, Giorgis F, Descrovi E, Michelotti F, Munzert P, Danz N, Napione L, Alvaro M, Bussolino F. A fluorescent one-dimensional photonic crystal for label-free biosensing based on bloch surface waves. Sensors, 13, 2011 (2013). http://dx.doi.org/10.3390/s130202011.   DOI
19 Xu X, Ray R, Gu Y, Ploehn HJ, Gearheart L, Raker K, Scrivens WA. Electrophoretic analysis and purification of fluorescent single-walled carbon nanotube fragments. J Am Chem Soc, 126, 12736 (2004). http://dx.doi.org/10.1021/ja040082h.   DOI
20 Mewada A, Pandey S, Shinde S, Mishra N, Oza G, Thakur M, Sharon M, Sharon M. Green synthesis of biocompatible carbon dots using aqueous extract of Trapa bispinosa peel. Mater Sci Eng C, 33, 2914 (2013). http://dx.doi.org/10.1016/j.msec.2013.03.018.   DOI
21 Li H, He X, Kang Z, Huang H, Liu Y, Liu J, Lian S, Tsang CHA, Yang X, Lee ST. Water-soluble fluorescent carbon quantum dots and photocatalyst design. Angew Chem Int Ed, 49, 4430 (2010). http://dx.doi.org/10.1002/anie.200906154.   DOI
22 Sun YP, Zhou B, Lin Y, Wang W, Fernando KAS, Pathak P, Meziani MJ, Harruff BA, Wang X, Wang H, Luo PG, Yang H, Kose ME, Chen B, Veca LM, Xie SY. Quantum-sized carbon dots for bright and colorful photoluminescence. J Am Chem Soc, 128, 7756 (2006). http://dx.doi.org/10.1021/ja062677d.   DOI