Browse > Article
http://dx.doi.org/10.3740/MRSK.2007.17.7.366

Corrosive Degradation of MgO/Al2O3-Added Si3N4 Ceramics under a Hydrothermal Condition  

Kim, Weon-Ju (Nuclear Materials Research Center, Korea Atomic Energy Research Institute)
Kang, Seok-Min (Nuclear Materials Research Center, Korea Atomic Energy Research Institute)
Park, Ji-Yeon (Nuclear Materials Research Center, Korea Atomic Energy Research Institute)
Publication Information
Korean Journal of Materials Research / v.17, no.7, 2007 , pp. 366-370 More about this Journal
Abstract
Silicon nitride ($Si_3N_4$) ceramics have been considered for various components of nuclear power plants such as the mechanical seal of a reactor coolant pump (RCP), the guide roller for a control rod drive mechanism (CRDM), and a seal support, etc. Corrosion behavior of $Si_3N_4$ ceramics in a high-temperature and high-pressure water must be elucidated before they can be considered as components for nuclear power plants. In this study, the corrosion behaviors of $Si_3N_4$ ceramics containing MgO and $Al_2O_3$ as sintering aids were investigated at a hydrothermal condition ($300^{\circ}C$, 9.0 MPa) in pure water and 35 ppm LiOH solution. The corrosion reactions were controlled by a diffusion of the reactive species and/or products through the corroded layer. The grain-boundary phase was preferentially corroded in pure water whereas the $Si_3N_4$ grain seemed to be corroded at a similar rate to the grain-boundary phase in LiOH solution. Flexural strengths of the $Si_3N_4$ ceramics were significantly degraded due to the corrosion reaction. Results of this study imply that a variation of the sintering aids and/or a control (e.g., crystallization) of the grain-boundary phase are necessary to increase the corrosion resistance of $Si_3N_4$ ceramics in a high-temperature water.
Keywords
Corrosion; silicon nitride; hydrothermal condition; flexural strength;
Citations & Related Records
Times Cited By KSCI : 1  (Citation Analysis)
Times Cited By SCOPUS : 0
연도 인용수 순위
1 T. Sato, T. Murakami, T. Endo, M. Shimada, K. Komeya, T. Kameda and M. Komatsu, J. Mater. Sci., 26, 1749 (1991)   DOI
2 N. Kishan Reddy, V. N. Mulay and M. A. Jaleel, J. Mater. Sci. Lett., 13, 1516 (1994)   DOI
3 A Technology Roadmap for Generation IV Nuclear Energy Systems, Generation IV International Forum, GIF-002-00, 2002
4 H. Hirayama, T. Kawakubo, A. Goto and T. Kaneko, J. Am. Ceram. Soc., 72, 2049 (1989)   DOI
5 J. H. Park, W. - J. Kim, J. N. Park, K. H. Park, J. Y. Park and Y. W. Lee, Kor. J. Mater. Res., 17, 160 (2007)   DOI   ScienceOn
6 H. Y. Sohn and M. E. Wadsworth, Rate Processes of Extractive Metallurgy, p.8, Plenum Press, New York (1979)
7 K. Oda, T. Yoshio, Y. Miyamoto and M. Koizumi, J. Am. Ceram. Soc., 76, 1365 (1993)   DOI   ScienceOn
8 W. - J. Kim, H. S. Hwang, J. Y. Park and W.- S. Ryu, J. Mater. Sci. Lett., 22, 581 (2003)   DOI   ScienceOn
9 K. Oda and T. Yoshio, J. Am. Ceram. Soc., 80, 3233 (1977)
10 L. Giancarii, H. Golfier, S. Nishio, R. Raffray, C. Wong and R. Yamada, Fus. Eng. Des., 61-62, 307 (2002)   DOI   ScienceOn
11 W. - J. Kim, S. M. Kang, K. H. Park, A. Kohyama, w.S. Ryu and J. Y. Park, J. Kor. Ceram. Soc., 42, 575 (2005)   DOI   ScienceOn
12 N. S. Jacobson, J. Am. Ceram. Soc., 76, 3 (1993)   DOI
13 D. S. Fox, E. J. Opila and R. E. Hann, J. Am. Ceram. Soc., 83, 1761 (2000)
14 E. J. Opila, J. Am. Ceram. Soc., 82, 625 (1999)
15 S. Somiya, Mater. Chern. Phys., 67, 157 (2001)   DOI   ScienceOn
16 V. A. Hackley, U. Paik, B. - H. Kim and S. G. Malghan, J. Am. Ceram. Soc., 80, 1781 (1997)