• Title/Summary/Keyword: Hydrothermal Method

Search Result 630, Processing Time 0.025 seconds

Electrochemical Characteristics of LiMn2O4 Cathodes Synthesized from Various Precursors of Manganese Oxide and Manganese Hydroxide (다양한 형태 및 구조의 망간산화물 및 망간수산화물 전구체로부터 합성한 LiMn2O4양극의 전기화학적 특성 연구)

  • Lee, Jong-Moon;Kim, Joo-Seong;Hong, Soon-Kie;Lee, Jeong-Jin;Ahn, Han-Cheol;Cho, Won-Il;Mho, Sun-Il
    • Journal of the Korean Electrochemical Society
    • /
    • v.15 no.3
    • /
    • pp.172-180
    • /
    • 2012
  • The $LiMn_2O_4$ cathodes for lithium ion battery were synthesized from various precursors of manganese oxides and manganese hydroxides. As the first step, nanosized precursors such as ${\alpha}-MnO_2$ (nano-sticks), ${\beta}-MnO_2$ (nano-rods), $Mn_3O_4$ (nano-octahedra), amorphous $MnO_2$(nano-spheres), and $Mn(OH)_2$ (nano-plates) were prepared by a hydrothermal or a precipitation method. Spinel $LiMn_2O_4$ with various sizes and shapes were finally synthesized by a solid-state reaction method from the manganese precursors and LiOH. Nano-sized (500 nm) octahedron $LiMn_2O_4$ showed high capacities of 107 mAh $g^{-1}$ and 99 mAh $g^{-1}$ at 1 C- and 50 C-rate, respectively. Three dimensional octahedral crystallites exhibit superior electrochemical characteristics to the other one-dimensional and two-dimensional shaped $LiMn_2O_4$ nanoparticles. After 500 consecutive charge discharge battery cycles at 10 C-rate with the nano-octahedron $LiMn_2O_4$ cathode, the capacity retention of 95% was observed, which is far better than any other morphologies studied in this work.

Heat Shield Property of Nanostructural-regulated Fe2O3/TiO2 Composites Filled with Polyacrylate Paint (나노구조 변화에 의한 Fe2O3/TiO2 복합재료를 충전한 Poly Acrylate 도료의 열차단 특성)

  • Kim, Dae Won;Ma, Young Kil;Kim, Jong Seok
    • Applied Chemistry for Engineering
    • /
    • v.31 no.1
    • /
    • pp.43-48
    • /
    • 2020
  • Fe2O3 nanoparticles with the mixed structure of cubic and nanorod were synthesized by precipitation, hydrothermal, sol-gel method, etching process and heat treatment. Fe2O3/TiO2 core-shell (CS) of type Fe2O3@TiO2 composite was fabricated on a 20 nm nanolayer of TiO2 coated on the surface of Fe2O3 nanoparticles. Fe2O3/TiO2 yolk-shell (YS) composite was prepared by chemical etching and heat treatment of Fe2O3/TiO2 CS nanoparticles. Physical properties of Fe2O3, Fe2O3@TiO2 CS and Fe2O3@TiO2 YS nanoparticles were characterized by FE-SEM, HR-TEM and X-ray diffraction. The solar reflectance, commission internationale de l'Elcairage (CIE) color coordinate and heat shield temperatures of Fe2O3, CS and YS type Fe2O3@TiO2 pigments filled with poly acrylate (PA) paints were investigated by UV-Vis-NIR spectrometer and homemade heat shield temperature measuring device. The Fe2O3@TiO2 YS red pigment filled PA composite exhibited excellent near infrared light reflecting performance and also reduced the heat shield temperature of 13 ℃ than that of Fe2O3 filled counterparts.

The Potential Acid Sulfate Soils Criteria by the Relation between Total-Sulfur and Net Acid Generation (전황함량과 순산발생능력의 상관관계를 통한 잠재특이산성토양 기준 설정)

  • Moon, Yonghee;Zhang, Yong-Seon;Hyun, Byung-Keun;Sonn, Yeon-Kyu;Park, Chan-Won;Song, Kwan-Cheol
    • Korean Journal of Soil Science and Fertilizer
    • /
    • v.45 no.6
    • /
    • pp.904-909
    • /
    • 2012
  • Acid sulfate soil (ASS) and potential acid sulfate soil (PASS) are distribution in worldwide and originate from sedimentary process, volcanic activity, or metamorphism and are problematic in agriculture and environmental due to their present and potential acidity developed by the oxidation. The PASS was defined as soil materials that had sulfidic layer more than 20 cm thick within 4 m of the soil profile and contained more than 0.15% of total-sulfur (T-S). A tentative interpretative soil classification system was proposed weak potential acid sulfate (T-S, 0.15-0.5%), moderate potential acid sulfate (T-S, 0.5-0.75%) and strong potential acid sulfate (T-S, more than 0.75%). PASS due to excess of pyrite over soil neutralizing capacity are formed. It provides no information on the kinetic rates of acid generation or neutralization; therefore, the test procedures used in acid base account (ABA) are referred to as static procedures. The net acid generation (NAG) test is a direct method to measure the ability of the sample to produce acid through sulfide oxidation and also provides and indication. The NAG test can evaluated easily whether the soils is PASS. The samples are mixed sandy loam and the PAS from the hydrothermal altered andesite (1:3, 1:8, 1:16, 1:20, 1:40, 1:80 and 1:200 ratios) in this study. We could find out that the NAG pH of the soil containing 0.75% of T-S was 2.5, and that of the soil has 0.15% of T-S was 3.8. NAG pH test can be proposed as soil classification criteria for the potential acid sulfate soils. The strong type has NAG pH of 2.5, the moderate one has NAG pH of 3.0, and the weak one has NAG pH of 3.5.

Preparation of Birnessite (δ-MnO2) from Acid Leaching Solution of Spent Alkaline Manganese Batteries and Removals of 1-naphthol (폐 알칼리망간전지의 산 침출액으로부터 버네사이트(δ-MnO2)의 제조 및 1-naphthol 제거)

  • Eom, Won-Suk;Lee, Han-Saem;Rhee, Dong-Seok;Shin, Hyun-Sang
    • Journal of Korean Society of Environmental Engineers
    • /
    • v.38 no.11
    • /
    • pp.603-610
    • /
    • 2016
  • This work studies the synthesis of birnessite (${\delta}-MnO_2$), a catalyst of oxidative-coupling reactions, from the powder of spent alkaline manganese batteries (SABP, <8 mesh) and evaluate its reactivity for 1-naphthol (1-NP) removals. Manganese oxides using commercial reagents ($MnSO_4$, $MnCl_2$) and the acid birnessite (A-Bir) by McKenzie method were also synthesized, and their crystallinity and reactivity for 1-NP were compared with one another. 96% Mn and 98% Zn were extracted from SABP by acid leaching at the condition of solid/liquid (S/L) ratio 1:10 in $1.0M\;H_2SO_4+10.5%\;H_2O_2$ at $60^{\circ}C$. From the acid leaching solution, 69% (at pH 8) and 94.3% (pH>13) of Mn were separated by hydroxide precipitation. Optimal OH/Mn mixing ratio (mol/mol) for the manganese oxide (MO) synthesis by alkaline (NaOH) hydrothermal techniques was 6.0. Under this condition, the best 1-NP removal efficiency was observed and XRD analysis confirmed that the MOs are corresponding to birnessite. Kinetic constants (k, at pH 6) for the 1-NP removals of the birnessites obtained from Mn recovered at pH 8 (${Mn^{2+}}_{(aq)}$) and pH>13 ($Mn(OH)_{2(s)}$) are 0.112 and $0.106min^{-1}$, respectively, which are similar to that from $MnSO_4$ reagent ($0.117min^{-1}$). The results indicated that the birnessite prepared from the SABP as a raw material could be used as an oxidative-coupling catalyst for removals of trace phenolic compounds in soil and water, and propose the recycle scheme of SAB for the birnessite synthesis.

Mineralogy and Geochemistry of Fault Gouge in Pyrite-rich Andesite (함황철석 안산암 내 단층 비지의 광물학적 및 지구화학적 연구)

  • Park, Seunghwan;Kim, Yeongkyoo
    • Journal of the Mineralogical Society of Korea
    • /
    • v.27 no.4
    • /
    • pp.301-310
    • /
    • 2014
  • To investigate the role of fault gauge in the behavior of heavy metals caused by the acid rock drainage in the area of pyrite-rich andesite, XRD, pH measurement, XRF, SEM-EDS, ICP, and sequential extraction method were used. Bed rock consists of quartz, pyrophyllite, pyrite, illite, and topaz, but the brown-colored fault gouge is composed of quartz, illite, chlorite, smectite, goethite, and cacoxenite. The mineral composition of bed rock suggests that it is heavily altered by hydrothermal activity. The concentrations of heavy metals in the bed rock are as follows, Zn > As > Cu > Pb > Cr > Ni > Cd, and those in fault gouge are As > Zn > Pb > Cr > Cu > Ni > Cd. The concentrations of the heavy metals in the fault gouge are generally higher than those in the bed rock, especially for Pb, As, and Cr, which were more than twice as those in the bed rock. It is believed that the difference in the amount of heavy metals between the bed rock and the fault gouge is mainly due to the existence of goethite which is the main mineral composition in the fault gouge and can play important role in sequestering these metals by coprecipitation and adsorption. The low pH, caused by oxidation of pyrite, also plays significant role in fixation of those metals. It is confirmed that the fractions of labile (step 1) and acid-soluble (step 2), which can be easily released into the environment, were higher in the bed rock. Those fractions were relatively low in fault gauge, suggesting that fault gauge can play important role as a sink of heavy metals to prevent those ones from being released in the area where the acid rock drainage can have an influence.

Effect of Carbon Dioxide Pressure on Mineral Carbonation in Acidic Solutions (산성용액에서 이산화탄소의 압력이 광물탄산화에 미치는 영향)

  • Ryu, Kyoung Won;Hong, Seok Jin;Choi, Sang Hoon
    • Economic and Environmental Geology
    • /
    • v.53 no.1
    • /
    • pp.1-9
    • /
    • 2020
  • Magnesium silicate minerals such as serpentine [Mg3Si2O5(OH)4] have a high potential for the sequestration of CO2; thus, their reactivity toward dissolution under CO2-free and CO2-containing conditions in acidic solvents is a critical process with respect to their carbonation reactions. To examine the carbonation efficiency and dissolution mechanism of serpentine, hydrothermal treatment was performed to the starting material via a modified direct aqueous carbonation process at 100 and 150℃. The serpentine dissolution experiments were conducted in H2SO4 solution with concentration range of 0.3-1 M and at a CO2 partial pressure of 3 MPa. The initial pH of the solution was adjusted to 13 for the carbonation process. Under CO2-free and CO2-containing conditions, the carbonation efficiency increased in proportion to the concentration of H2SO4 and the reaction temperature. The leaching rate under CO2-containing conditions was higher than that under CO2-free conditions. This suggests that shows the presence of CO2 affects the carbonation reaction. The leaching and carbonation efficiencies at 150℃ in 1 M H2SO4 solution under CO2-containing conditions were 85 and 84%, respectively. The dissolution rate of Mg was higher than that of Si, such that the Mg : Si ratio of the reacted serpentine decreased from the inner part (approximately 1.5) to the outer part (less than 0.1). The resultant silica-rich layer of the reaction product ultimately changed through the Mg-depleted skeletal phase and the pseudo-serpentine phase to the amorphous silica phase. A passivating silica layer was not observed on the outer surface of the reacted serpentine.

Characterisitics of Redox Reaction of the Magnetite Powder Prepared by Hydrothermal Synthesis (수열합성법으로 합성된 마그네타이트 분말에 대한 산화.환원 특성)

  • Park, Sung Youl;Kang, Min Pil;Rhee, Young Woo;Nam, Sung Chan
    • Korean Chemical Engineering Research
    • /
    • v.43 no.6
    • /
    • pp.751-755
    • /
    • 2005
  • Carbon dioxide, included in the flue gas from the combustion of fossil fuel, was known as a representative green house gas and various removal and utilization technologies of it has been studied for the prevention of global warming. This study was performed as an effort to find out a method to reuse carbon dioxide separated from flue gas by magnetite powder. Magnetite powder was synthesized using various oxidizers and alkalinity controlled aqueous solutions of $FeSO_4{\cdot}7H_2O$ and NaOH at 50, 80, 90, $100^{\circ}C$ and analyzed by XRD and SEM. The analysis results showed that magnetite powder synthesized at higher alkalinity and temperature had crystalline spinel and cubic structure. The reduction by hydrogen and the oxidation by carbon dioxide of synthesized powder were studied by TGA. The results showed that magnetite powder synthesized at low alkalinity and temperature was non-cubical amorphous but crystalline and cubical at high alkalinity and temperature. Comparing magnetite powders synthesized using oxidants(air and oxygen) and nitrogen, magnetite powder using more oxygen containing oxidant synthesized more crystalline magnetite powder. The experimental results of redox reaction of the synthesized magnetite powder showed that the reduction by hydrogen and the oxidation by carbon dioxide were seldom observed below $400^{\circ}C$ and observed well at $500^{\circ}C$. Magnetite powder synthesized at $100^{\circ}C$ and alkalinity(molal concentration ratio of $FeSO_4{\cdot}7H_2O$ to NaOH) of 2.0 using $O_2$ showed the highest reduction of 27.15 wt% and oxidation of 26.73 wt%, especially at reaction temperature of $500^{\circ}C$.

Glycerol Steam Reforming for Hydrogen Production on Metal-ceramic Core-shell CoAl2O4@Al Composite Structures (금속-세라믹 Core-Shell CoAl2O4@Al 구조체를 적용한 불균일계 촉매의 글리세롤 수소전환 반응특성)

  • Kim, Jieun;Lee, Doohwan
    • Clean Technology
    • /
    • v.21 no.1
    • /
    • pp.68-75
    • /
    • 2015
  • In this study, we investigated the structure and properties of a highly heat conductive metal-ceramic core-shell CoAl2O4@Al micro-composite for heterogeneous catalysts support. The CoAl2O4@Al was prepared by hydrothermal surface oxidation of Al metal powder, which resulted in the structure with a high heat conductive Al metal core encapsulated by a high surface area CoAl2O4 shell. For comparison, CoAl2O4 was also prepared by co-precipitation method and also utilized for a catalyst support. Rh catalysts supported on CoAl2O4@Al and CoAl2O4 were prepared by incipient wetness impregnation and characterized by N2 adsorption, X-ray diffraction (XRD), scanning electron microscopy (SEM), CO chemisorption, and temperature-programmed reduction (TPR). The properties of catalysts were investigated for glycerol steam reforming reaction for hydrogen production at 550 ℃. Rh/CoAl2O4@Al exhibited about 2.8 times higher glycerol conversion turnover frequency (TOF) than Rh/CoAl2O4 due to facilitated heat transport through the core-shell structure. The CoAl2O4@Al and CoAl2O4 also showed some catalytic activities due to a partial reduction of Co on the support, and a higher catalytic activity was also found on the CoAl2O4@Al core-shell than CoAl2O4. These catalysts, however, displayed deactivation on the reaction stream due to carbon deposition on the catalysts surface.

Synthesis of ceramic particles by hydrothermal method (수열법에 의한 세라믹분말 합성)

  • 김판채;최종건
    • Proceedings of the Korea Association of Crystal Growth Conference
    • /
    • 1996.06b
    • /
    • pp.219-222
    • /
    • 1996
  • 수열법은 밀폐용기중에서 10$0^{\circ}C$이상의 가열, 가압된 수용액이 반응에 관여하는 것으로써, 수정, CaCO3, AlPO4, GaPO4 등과 같은 단결정의 육성 뿐만 아니라 균일분산계로부터 균일한 결정성의 미립자 합성에도 폭넓게 이용되고 있다. 세라믹분말의 합성에 있어서, 이 방법은 특히 형상, 입자크기의 제어가 용이할 뿐만 아니라 고상법, 졸-겔법, 공침법에서와 같은 열처리, 분쇄과정이 필요없기 때문에 고순도의 초미립자를 얻을 수 있는 장점이 있다. 근년 미국, 일본에서는 수열법을 이용한 유전, 압전체 등 세라믹분말의 일부가 공업적인 규모로 대량 생산되고 있다. 그러나 이에 대한 국내 기술은 아직 초기단계에 이르고 있는 실정이다. 따라서 본 연구실에서는 수열법에 의한 단결정 육성 (예; 자수정, CaCO3, AlPO4, GaPO4, KTP, Emerald 등), 박막제조 (예; GaP, PbTiO3, BaTiO3 등), 정제 (고령토, 장석, 도석 등), 원석처리 (진주, 인공 emerald, 비취 등) 그리고 각종 세라믹분말의 합성 등과 같은 다양한 기반기술의 축적과 동시에 공업화에 대응한 수열장치를 위하여 반응용기의 대형화, 엄밀한 밀폐방식, 실용적인 수열조건 등을 개발해 오고 있다. 본 발표에서는 현재까지의 연구개발 내용 중에서 결정성 미립자에 관련한 세라믹분말의 합성에 대한 일부의 결과들을 보고한다. 일반적으로 수열장치는 전기로, 반응용기, 온도 및 압력제어계 등을 기본으로 하고 있으며 시판용의 대부분이 교반기가 부착된 수직형 (vertical type)이다. 이와 같은 방식에 있어서는 엄밀한 밀폐가 곤란, 반응온도의 한계성 (25$0^{\circ}C$ 이하), 증진율의 한계성 (소량생산) 등과 같은 점이 있기 때문에 본 연구실에서는 개폐식 전기로내에 엄밀한 밀폐가 가능한 수평식(horizontal type)의 반응용기를 채택한 뒤 이를 회전 또는 시이소(seesaw)식으로 움직일 수 있도록 하여 연속공정화, 온도구배의 자율조절 그리고 보다 저온에서도 인위적인 이온의 확산을 효율적으로 유도할 수 있도록 하였다. 이와 같은 방식은 기존의 방식과 비교하여 반응용기 내에 응집현상과 미반응물이 존재하지 않으며 또한 단분산으로 결정성 미립자를 대량적으로 얻을 수 있는 장점이 있었다. 다음은 이상과 같이 본 연구실에서 자체 개발한 수열장치를 이용하여 PbTiO3, (Pb,La)TiO3Mn, BaTiO3, ZnSiO4:Mn, CaWO4 등과 같은 세라믹분말에 대한 합성 실험의 결과이다. 압전성, 초전성이 우수한 PbTiO3 및 (Pb,La)TiO3:Mn 분말의 수열합성은 PbO, TiO2, La2O3 등의 분말을 출발원료로 하여 합성도도 25$0^{\circ}C$부근의 알카리성 용액중에서 결정성 PbTiO3 및 (Pb,La)TiO3:Mn 미립자를 단상으로 얻었으며 입자의 형상 및 크기는 합성온도와 수열용매의 종류에 의존하였다. 유전체로서 폭넓게 응용되고 있는 BaTiO3 분말은 Ba(OH)2.8H2O, TiO2와 같은 최적의 출발원료를 선택함으로써 15$0^{\circ}C$ 부근의 저온영역에서도 용이하게 합성할 수 있었다. 특히 본 연구에서는 수용성인 Ba(OH)2.8H2O를 사용함으로써 host-guest적인 반응을 유도시키는데 있어 물의 가장 실용적이고 효과적인 수열용매임도 알았다. ZnSiO4:Mn, CaWO4, MgWO4와 같은 형광체 분말은 공업적으로 고상반응 또는 습식법에 의해 얻어지고 있으나 이들 방법에 있어서는 분쇄공정으로 인한 형광특성의 저하와 같은 문제점이 있다. 따라서 본 연구에서는 수열법을 이용하여 이들 화합물의 합성을 시도하였으며 그 결과 합성온도 30$0^{\circ}C$ 부근의 알칼리성 용액중에서 수열적으로 얻어짐을 알았다. 여기서의 합성분말을 이용하여 실제 조명램프로 제조한 결과 녹색, 청색 발광용 형광체로서 우수한 형광특성을 나타내었다. 천연에서 소량 산출되고 있는 고가의 (Li,Al)MnO2(OH)2:Co 분말은 도자기의 전사지용 청색안료로써 이용되고 있다. 본 연구실에서는 LiOH.H2O, Al(OH)3, MnO2 등의 분말을 출발원료로 하고 24$0^{\circ}C$ 온도 부근 그리고 물을 수열용매로 하여 천연산에 필적하는 (Li,Al)MnO2(OH)2:Co 분말을 인공적으로 합성하였다.

  • PDF

Screening of the Antimicrobial and Antitumor Activity of Xanthium strumarium L.Extract (한국산 도꼬마리 추출물로부터 항균.항암물질의 탐색)

  • 김현수;유대식;이인선;김용원;여수환
    • KSBB Journal
    • /
    • v.18 no.1
    • /
    • pp.55-61
    • /
    • 2003
  • To isolate and purify the antimicrobial and antitumor agents in Xanthium strumarium L. hydrothermal extract. The crude extract was extracted in ether or ethylacetate under neutral, acidic, and alkali conditions. The antimicrobial activity of each extract was tested against 16 strains of bacteria, 2 strains of yeast, and 2 strains of fungus. The ether neutral extract (XE-N) exhibited the strongest growth inhibition upon the 8 strains of gram-positive bacteria, 6 strains of gram-negative bacteria and Cryptococcus neoformans. Fluorescein diacetate (FDA) testing of XE-N and XEA-N showed growth inhibition of the 3 strains of E. coli, S. aureus and C. albicans even at 30 ng/mL, with the exception of p. aeruginosa. XE-N-S1 and XE-N-S3 from neutral ether extract (XE-N), XE-N-S3 from the acidic ether extract (XE-A), and XEA-N-S1 from ethylacetate (XEA-N) were purified as antimicrobial and antitumor agents. However all purified compounds decomposed with the exception of XE-N-S1. The results upon the antitumor activities of the crude extract and of its purified compounds, showed that XE-N-S1 had the best antitumor activity against HeLa cells. In terms of antitumor activity against HepG2 cells, XE-N-S1 and XE-N-S3 were superior, and against HT29 cells XE-N and XE-N-Sl were good, against Saos2, NCI H522, NCI H1703, Clone M3 cells XE-N-51 was very good, and against LN CAP cells XE-N-S3 was the best. Comparing of cellular toxicities various extracts and purified compounds with the existing antitumor agents, XE-A, XEA-A and XEA-B had the lowest toxicity, and XE-B had a lower toxicity than etoposide. XE-N-S1 and XE-N-S3 showed higher toxicities than etoposide, and the toxicity of XE-A-S3 was higher than that of etoposide, and lower than that of csplatin.