DOI QR코드

DOI QR Code

전황함량과 순산발생능력의 상관관계를 통한 잠재특이산성토양 기준 설정

The Potential Acid Sulfate Soils Criteria by the Relation between Total-Sulfur and Net Acid Generation

  • 문용희 (농촌진흥청 국립농업과학원) ;
  • 장용선 (농촌진흥청 국립농업과학원) ;
  • 현병근 (농촌진흥청 국립농업과학원) ;
  • 손연규 (농촌진흥청 국립농업과학원) ;
  • 박찬원 (농촌진흥청 국립농업과학원) ;
  • 송관철 (농촌진흥청 국립농업과학원)
  • 투고 : 2012.09.26
  • 심사 : 2012.11.30
  • 발행 : 2012.12.31

초록

황철석 (Pyrite, FeS2)을 함유한 잠재특이산성토는 강하류 삼각지 토양, 간척지 등의 해성토뿐만 아니라, 영일만과 같은 융기해성토 지대, 내륙의 선상지하단 유기물이 많은 암흑색 토층이 있을 때에 존재하는 수가 있다. 또한 안산암 지역의 열수작용에 의해 생성되어 암맥을 따라 형성된 황철석이 광산개발이나 도로건설로 절취사면에서 노출되어 산화되면 매우 강한 산성을 띠는 특이산성토층을 형성하여 주변농경지에 피해를 주고 있다. 현재 잠재특이산성토양의 판정은 현장에서는 과산화수소로 반응 시 수증기발생 정도로 판단하거나 실내실험에서는 전황 (Total-S)성분의 함량으로 판단한다. 하지만 이들 방법은 시군농업기술센터 및 현장 진단 시 적용이 용이하지 않다. 산발생 능력평가 중 순산 발생능력실험 (Net Acid Generation, NAG pH)은 대상지역의 산성발생 가능성에 대한 예측을 정량적 계산으로 가능하다. 순산발생능력실험을 이용하여 전황함량과 NAG pH와의 상호관계를 통해 특이산성토양 판정을 제안하기 위해 화산기원의 잠재특이산성 토양과 사양질 토양을 일정비율로 혼합된 토양과 특이산성토양인 김해통과 해척통 토양에 대해 실험을 수행하였다. 전황의 함량이 0.75% 이상인 시료의 NAG pH가 2.5이며 0.75-0.50%의 중간 특이산성토양은 NAG pH 3.0으로 측정되었다. 그리고 전황 함량이 0.5-15% 약한 특이산성 토양은 NAG pH 3.8로 측정되었다. 따라서 순산발생량은 NAG pH를 이용하여 토양 내 황철석을 모두 산화시키고 pH를 측정하여 pH 3.8이하인 토양은 특이산성토양으로 구분하는 것이 타당할 것으로 판단되었다.

Acid sulfate soil (ASS) and potential acid sulfate soil (PASS) are distribution in worldwide and originate from sedimentary process, volcanic activity, or metamorphism and are problematic in agriculture and environmental due to their present and potential acidity developed by the oxidation. The PASS was defined as soil materials that had sulfidic layer more than 20 cm thick within 4 m of the soil profile and contained more than 0.15% of total-sulfur (T-S). A tentative interpretative soil classification system was proposed weak potential acid sulfate (T-S, 0.15-0.5%), moderate potential acid sulfate (T-S, 0.5-0.75%) and strong potential acid sulfate (T-S, more than 0.75%). PASS due to excess of pyrite over soil neutralizing capacity are formed. It provides no information on the kinetic rates of acid generation or neutralization; therefore, the test procedures used in acid base account (ABA) are referred to as static procedures. The net acid generation (NAG) test is a direct method to measure the ability of the sample to produce acid through sulfide oxidation and also provides and indication. The NAG test can evaluated easily whether the soils is PASS. The samples are mixed sandy loam and the PAS from the hydrothermal altered andesite (1:3, 1:8, 1:16, 1:20, 1:40, 1:80 and 1:200 ratios) in this study. We could find out that the NAG pH of the soil containing 0.75% of T-S was 2.5, and that of the soil has 0.15% of T-S was 3.8. NAG pH test can be proposed as soil classification criteria for the potential acid sulfate soils. The strong type has NAG pH of 2.5, the moderate one has NAG pH of 3.0, and the weak one has NAG pH of 3.5.

키워드

참고문헌

  1. Bigham, J.M., U. Schwertmann, S.J. Traina, R.L. Winland, and M. Wolf. 1996. Schwertmannit and the chemical modeling of iron in acid sulfate waters. Geochim. et Cosmochim. Acta. 60:2111-2121. https://doi.org/10.1016/0016-7037(96)00091-9
  2. Blowes, D.W. and J.L. Jambor. 1990. The pore-water geochemistry and the mineralogy of the vadose zone of sulfide tailings, Waite Amulet, Quebec, Canada. Applied Geochemistry. 5:327-346. https://doi.org/10.1016/0883-2927(90)90008-S
  3. Jung Y.T., J.K. Kim, I.S. Son, and E.S. Yun. 1990. Distribution and characteristics of potential acid sulfate soil layer contained soils in Yeongnam area. Res. Rept. RDA. 32:1-8.
  4. Jung Y.T., Y.P. No, and C.O. Baeg. 1989. Characterization and classification of potential acid sulfate soil on Flood-Plains. Korean J. Soil Sci. Fert. 22:173-179.
  5. Jung Y.T., E.S. Yun, Y.S. Choi, J.S. Kim, Y.D. Kim, and K.Y. Jung. 1997. Improvement of paddy soils acidified by the water inflowed from potential acid sulfate soil in Tertiary deposits. Korean J. Soil Sci. & Fert. 39:1-7.
  6. Kim J.G., C.-M. Chon, E.S. Yun, Y.S. Zhang, P.K. Jung, and Y.T. Jung. 2000. Volcanic origin potential acid sulfate soil material: Hydrothermally altered pyrite rich andesite. Korean J. Soil Sci. Fert. 33:311-317.
  7. Lee G.H., J.G. Kim, J.S. Lee, C.M. Chon, S.G. Park, T.H. Kim, K.-S. Ko, and T.K. Kim. 2005. Generation characteristics and prediction of acid rock drainage (ARD) of cut slopes. Econ and Environ. Geol. 38:91-99 (Korea).
  8. Moon Y., Y. Song, and H.-S. Moon. 2008. The potential acid-producing capacity and factors controlling oxidation tailings in the Guryong mine, Korea. Environ Geol 53:1787-1797. https://doi.org/10.1007/s00254-007-0784-9
  9. NIAST. 2000. Taxonomical classification of Korean soils. RDA press.
  10. Nordstrom D.K. 1982. Aqueous pyrite oxidation and the consequent formation of secondary minerals. In Acid Sulphate weathering. p.37-56. Soil Science Society American.
  11. Paktunc A.D. 1999. Mineralogical constraints on the determination of neutralization potential and prediction of acid mine drainage. Environ. Geol. 39:130-112.
  12. Parkhurst D.L. and C.A.J. Appelo. 2002. User's guide to PHREEQCI (version 2.8)-A computer program for speciation, batch-reaction, one-dimensional transport, and inverse geochemical calculations. U.S. Geological Survey. Denver, Colorado.
  13. Sobek A.A., W.A. Schuller, J.R. Feeman, and R.M. Smith. 1978. Field and laboratory methods applicable to overburden and mine soils. EPA report No. 600/2-78-054. p. 47-50.
  14. Schumann R., W. Stewart, S. Miller, N. Kawashima, J. Li, and R. Smart. 2012. Acid-base accounting assessment of mine wastes using the chromium reducible sulfur method. Sci. Total Environ. 424:289-206. https://doi.org/10.1016/j.scitotenv.2012.02.010
  15. U.S. EPA. 2003. EPA and Hardrock mining: A Source book for industry in the Northwest and Alaska. Appendix C: Characterization of ore, waste rock and tailings. US Environmental Protection Agency Region 10.
  16. Weber P.A., W.A. Stewart, W.M. Skinner, C.G. Weisener, J.E. Thomas, and R.S.C. Smart. 2004. Geochemical effects of oxidation products and framboidal pyrite oxidation in acid mine drainage prediction techniques. Applied Geochemistry. 19:1953-1974. https://doi.org/10.1016/j.apgeochem.2004.05.002