• Title/Summary/Keyword: Hydropower turbine

Search Result 93, Processing Time 0.021 seconds

A Study on Hydraulic Performance of Francis Turbine for Small Hydropower Plants (소수력 발전용 프란시스 수차의 수력학적 성능에 관한 연구)

  • Choi, J.S.;Kim, I.S.;Moon, C.J.;Kim, O.S.
    • Proceedings of the KIPE Conference
    • /
    • 2005.07a
    • /
    • pp.687-689
    • /
    • 2005
  • Francis turbine of commercial small hydro -power plants under 10kw which is investigate a flow characterist and an efficiency in the research which it sees, the problem and an improvement is investigate. In the research which it is simply model with casing, guide-vane, runner, draft tube for simulation numerical analysis of small-sized Francis turbine. model uses the Gambit and it composes with approximately 800,000 nonuniform lattices. Solutions are investigate the hydraulic characteristics against an outward angle of guide vane, the number of guide vane, head(inlet velocity) by using FLUENT which is a commercial business code.

  • PDF

Analysis on the Hydraulic Performance Characteristics of Kaplan Turbine Model (카프란수차모헝의 수력학적 성능특성 분석)

  • Lee, Chul-Hyung;Park, Wan-Soon
    • 한국신재생에너지학회:학술대회논문집
    • /
    • 2006.06a
    • /
    • pp.495-498
    • /
    • 2006
  • The Kaplan turbine model has been tested and analyzed. The blade angle and the guide vane opening of the turbine model were designed to be varied according to the best combination of guide vane and runner blade opening. When the changes in head and output were comparatively large, the efficiency drop were small, so the efficiency characteristics and stability of the entire operating condition were maintained in good condition. These results showed that the developed model in this study will be suitable for small hydropower stations with large changes In head and load such as agricultural reservoir.

  • PDF

Optimized Sealing Profile Design of Mechanical Face Seals for a Hydro-power Turbine (소수력 터빈용 기계평면시일의 최적형상설계에 관한 연구)

  • Kim, Chung-Kyun;Kim, Jung-Il;Sihn, Ihn-Cheol;Lim, Kwang-Hyeon
    • 한국신재생에너지학회:학술대회논문집
    • /
    • 2006.06a
    • /
    • pp.499-502
    • /
    • 2006
  • This paper presents computed results of FEM analysis on the tribological contact behaviors of a primary sealing components of mechanical face seals for a small hydro-power turbine. The FEM computed results present that the contact area between seal rings and seal seats is very important for a good tribological performance such as low friction heating, low wear, high contact normal stress in a primary seal ing components. Based on the FEM computation, model III in which has a small sealing contact area shows low dilatation of primary sealing components, and high contact stress between a seal ring and a 1)seal seat.

  • PDF

A Study on Darrieus-type Hydroturbine toward Utilization of Extra-Low Head Natural Flow Streams

  • Tanaka, Kei;Hirowatari, Kotaro;Shimokawa, Kai;Watanabe, Satoshi;Matsushita, Daisuke;Furukawa, Akinori
    • International Journal of Fluid Machinery and Systems
    • /
    • v.6 no.3
    • /
    • pp.152-159
    • /
    • 2013
  • A two-dimensional Darrieus-type hydroturbine system, installed with a wear for flow streams such as small rivers and waterways, has been developed for hydropower utilization of extra-low head less than 2m. There are several problems such as flow rate change and flowing wastes to be solved for its practical use in natural flow streams. In the present study, at first, a design guideline in the case of overflow or bypass flow is shown by using simple flow model. Next, in order to avoid the unexpected obstacles flowing into the hydroturbine, an installation of waste screening system is examined. It is confirmed that the screen is effective with some amount of bypass flow rate, however the output power is remarkably deteriorated.

Performance Characteristics of Small Tubular-type Hydroturbine according to the Guide Vane Opening Angle by Experiment and CFD (실험 및 CFD에 의한 가이드베인 개도에 따른 소형 튜블러 수차의 성능특성)

  • Nam, Sang-Hyun;Kim, You-Taek;Choi, Young-Do;Lee, Young-Ho
    • The KSFM Journal of Fluid Machinery
    • /
    • v.11 no.5
    • /
    • pp.44-49
    • /
    • 2008
  • As the alternative energy, renewable energy should have been developing by many techniques, in order to substitute the fossil fuel which will be disappeared in the near future. One of the small hydropower generator, main concept of tubular turbine is based on using the different water pressure levels in pipe lines, energy which was initially wasted by using a reducing valve at the end of the pipeline, is collected by turbine in the hydro power generator. A propeller shaped hydro turbine has been used in order to use this renewable pressure energy in order to acquire basic design data of tubular type hydraulic turbine, output power, head, efficiency characteristics due to the guide vane opening angle are examined in detail. First, it ensures the reliance of CFD by that of compared with experiment data. After all, the results of performance characteristics of the CFD and experiment show to confirm the data that power, head and efficiency of less than 4%, 2% and 5% respectively. Moreover influences of pressure, tangential and axial velocity distributions on turbine performance are investigated.

Comparison of steady and unsteady simulation methodologies for predicting no-load speed in Francis turbines

  • Hosseinimanesh, Hossein;Devals, Christophe;Nennemann, Bernd;Guibault, Francois
    • International Journal of Fluid Machinery and Systems
    • /
    • v.8 no.3
    • /
    • pp.155-168
    • /
    • 2015
  • No-load speed is an important performance factor for the safe operation of hydropower systems. In turbine design, the manufacturers must conduct several model tests to calculate the accurate value of no-load speed for the complete range of operating conditions, which are expensive and time-consuming. The present study presents steady and unsteady methods for calculating no-load speed of a Francis turbine. The steady simulations are implemented using a commercial flow solver and an iterative algorithm that relies on a smooth relation between turbine torque and speed factor. The unsteady method uses unsteady RANS simulations that have been integrated with a user subroutine to compute and return the value of runner speed, time step and friction torque. The main goal of this research is to evaluate and compare the two methods by calculating turbine dynamic parameters for three test cases consisting of high and medium head Francis turbines. Overall, the numerical results agreed well with experimental data. The unsteady method provided more accurate results in the opening angle range from 20 to 26 degrees. Nevertheless, the steady results showed more consistency than unsteady results for the three different test cases at different operating conditions.

Hydraulic Performance of Francis Turbine with Various Discharge Angles (유출각 변화에 따른 프란시스 수차 성능해석)

  • Jeon, J.H.;Byeon, S.S.;Choi, Y.C.;Park, J.S.;Kim, Y.J.
    • The KSFM Journal of Fluid Machinery
    • /
    • v.16 no.4
    • /
    • pp.10-14
    • /
    • 2013
  • In this study, we have numerically investigated the hydraulic efficiency with various values of discharge angle($11^{\circ}$, $12^{\circ}$, $14^{\circ}$, $15^{\circ}$, $17^{\circ}$, $18^{\circ}$, $20^{\circ}$) in the Francis turbine of hydropower generation under 15MW with fixed values of head range of 151m and flow rate($10.97m^3/s$). We also conducted the numerical analysis with constant inlet angle in the Francis turbine using the commercial code, ANSYS CFX. Hydraulic characteristics for different values of the runner blade angle are investigated. The results showed that the change of discharge angles significantly influenced on the performance of the turbine hydraulic efficiency.

Development of a Submerged Propeller Turbine for Micro Hydro Power

  • Kim, Byung-Kon
    • The KSFM Journal of Fluid Machinery
    • /
    • v.18 no.6
    • /
    • pp.45-56
    • /
    • 2015
  • This paper aims to develop a submerged propeller turbine for micro hydropower plant which allows to sustain high values of efficiency in a broad range of hydrological conditions (H=2~6 m, $Q=0.15{\sim}0.39m^3/s$). The two aspects to be considered in this development are mechanical simplicity and high-efficiency operation. Unlike conventional turbines that have spiral casing and gear box, this is directing driving and no spiral casing. A 10 kW class turbine which has the most high potential of the power generation has been developed. The most important element in the design of turbine is the runner blade. The initial blade is designed using inverse design method and then the runner geometry is modified by classical hydraulic method. The design process is carried out in two steps. First, the blade shape is fix and then other components of submerged propeller turbine are designed. Computational fluid dynamics analyses based on the Navier-Stokes equations have been used to obtain overall performance data for the blade and the full turbine, respectively. The results generated by performance parameters(head, guide vane opening angle and rotational speed) variations are theoretically analysed. The evaluation criteria for the blade and the turbine performances are the pressure distribution and flow's behavior on the runner blades and turbine. The results of simulation reveals an efficiency of 91.5% and power generation of 10.5kW at the best efficiency point at the head of 4m and a discharge of $0.3m^3/s$.

A Design of Filler Compensated PID Controller via Transfer Function Synthesis (전달함수 합성법에 의한 필터 보상형 PID 제어기 설계)

  • Kim, Jong-Gun;Kim, Ju-Sik;Kim, Hong-Kyu
    • Journal of the Korean Institute of Illuminating and Electrical Installation Engineers
    • /
    • v.22 no.9
    • /
    • pp.88-93
    • /
    • 2008
  • This paper proposes a frequency transfer function synthesis of a later compensated PID controller for an approximated low order model. The proposed method identifies the parameter vector of PID controller from a linear system that is formed by rearranging a loop frequency transfer function synthesis including the filter compensated PID controller obtained from the given frequency response bounds. And an example for the turbine speed control system of Chungju hydropower plant is given to illustrate the feasibilities of suggested schemes.

Development of The New High Specific Speed Fixed Blade Turbine Runner

  • Skotak, Ales;Mikulasek, Josef;Obrovsky, Jiri
    • International Journal of Fluid Machinery and Systems
    • /
    • v.2 no.4
    • /
    • pp.392-399
    • /
    • 2009
  • The paper concerns the description of the step by step development process of the new fixed blade runner called "Mixer" suitable for the uprating of the Francis turbines units installed at the older low head hydropower plants. In the paper the details of hydraulic and mechanical design are presented. Since the rotational speed of the new runner is significantly higher then the rotational speed of the original Francis one, the direct coupling of the turbine to the generator can be applied. The maximum efficiency at prescribed operational point was reached by the geometry optimization of two most important components. In the first step the optimization of the draft tube geometry was carried out. The condition for the draft tube geometry optimization was to design the new geometry of the draft tube within the original bad draft tube shape without any extensive civil works. The runner blade geometry optimization was carried out on the runner coupled with the draft tube domain. The blade geometry of the runner was optimized using automatic direct search optimization procedure. The method used for the objective function minimum search is a kind of the Nelder-Mead simplex method. The objective function concerns efficiency, required net head and cavitation features. After successful hydraulic design the modal and stress analysis was carried out on the prototype scale runner. The static pressure distribution from flow simulation was used as a load condition. The modal analysis in air and in water was carried out and the results were compared. The final runner was manufactured in model scale and it is going to be tested in hydraulic laboratory. Since the turbine with the fixed blade runner does not allow double regulation like in case of full Kaplan turbine, it can be profitably used mainly at power plants with smaller changes of operational conditions or in case with more units installed. The advantages are simple manufacturing, installation and therefore lower expenses and short delivery time for turbine uprating.