• Title/Summary/Keyword: Hydrophobic organic matter

Search Result 67, Processing Time 0.028 seconds

Determination of Optimal Coagulation Condition for Coagulation-UF Water Treatment Process (응집-UF 정수공정을 위한 칠적응집조건의 결정)

  • Lee, Chul-Woo;An, Su-Kyong;Kang, Lim-Seok
    • Journal of Korean Society of Environmental Engineers
    • /
    • v.27 no.8
    • /
    • pp.799-806
    • /
    • 2005
  • Applying coagulation process before membrane filtration showed not only reducing membrane fouling, but also improving the removal of dissolved organic materials that might otherwise not be removed by the membrane alone. Also, slow mixing didn't affect the reduction of membrane fouling, and rapid mixing using an in-line static mixer was more effective than using backmixer. In addition, only 11 percent of dissolved organic matter in raw water was the primary cause of fouling. Furthermore, tile primary foulant of UF membrane was hydrophobic substance, which can easily be removed by coagulation.

A study on the fouling characteristics of low-pressure membranes and NOM with coagulation pretreatment (응집제 주입에 따른 NOM과 저압막의 막오염 특성에 관한 연구)

  • Park, Sang-Hyuk;Hong, Jong-Hyun;Yu, Myong-Jin;Koo, Ja-Yong
    • Journal of Korean Society of Water and Wastewater
    • /
    • v.24 no.2
    • /
    • pp.237-246
    • /
    • 2010
  • This study was carried out to compare the performances of hydrophobic and hydrophilic membranes in the filtration of the pretreatment waters using coagulants such as PAC and PAHCs, and to investigate the influence of NOM characteristics on the fouling of membranes. As a result, the hydrophobic fraction was more effectively removed by PAHCs, however the transphilic and hydrophilic fraction were more effectively removed by PAC on NOM removal. Raw water showed the highest response in the range of humic substances, and pre-coagulated waters with PAC and PAHCs followed. It was also observed that the fouling effect for a hydrophobic membrane was greater than that of a hydrophilic membrane with a similar pore size, due to fouling caused by adsorption. Foulants causing significant flux decline were alcoholic compounds (polysaccharide-like) and humic substances including aromatic groups. Especially, it appeared that alcoholic compounds such as polysaccharide-like substances which mostly remained after coagulation pretreatment had most influence on fouling. It was found that fouling were influenced by each fraction NOM components depending on coagulants used. And PAHCs was more efficient for membrane fouling than PAC.

Effect of Pretreatment Process on Hybrid Membrane Filtration Performance (원수의 물리.화학적 특성에 따른 막 분리 공정의 전처리 공정 적용성 평가)

  • Jung, Chul-Woo;Son, Hee-Jong;Bae, Sang-Dae
    • Journal of Korean Society of Environmental Engineers
    • /
    • v.28 no.6
    • /
    • pp.613-619
    • /
    • 2006
  • The objectives of this research are to evaluate the effect of membrane materials, particulate matter and membrane pore size on permeate flux. It was shown that the removal efficiency of high MW organic matter more than 10 kDa was lower than that of low MW organic matter for $MIEX^{(R)}$ process. For the change of permeate flux by the pretreatment process, $MIEX^{(R)}+UF$ process showed high removal efficiency of organic matter as compared with coagulation+UF processes, but high reduction rate of permeate flux was presented through the reduction of removal efficiency of high MW organic matter. The pretreatment of the raw water significantly reduced the fouling of the hydrophilic membrane, but did not decrease the flux reduction of the hydrophobic membrane. Flux decline on MF process increased due to the pore clogging, while the permeate flux decline of UF process decreased due to the formation of cake layer. It was shown that particle matter was not effect on MIEX+membrane process. But, for coagulation+membrane process, particle matter was important factor on permeate flux.

Physicochemical and Toxicological Properties of Effluent Organic Matters from Sewage and Industrial Treatment Plants (하폐수처리장 유래 방류수유기물질의 물리화학적 및 독성학적 특성)

  • Yoo, Jisu;Lee, Bomi;Hur, Jin;Jung, Jinho
    • Journal of Korean Society on Water Environment
    • /
    • v.30 no.1
    • /
    • pp.80-86
    • /
    • 2014
  • Unlike to natural organic matters (NOMs), effluent organic matters (EfOMs) are not well understood due to their complexity and heterogeneity. In this study, EfOMs from sewage and industrial wastewater treatment effluents and Suwannee River NOM (SRNOM) were isolated into hydrophobic (HPO), transphilic (TPI) and hydrophilic (HPI) fractions. Specific ultraviolet absorbance (SUVA) and fluorescence excitation emission matrix (FEEM) analyses were used to characterize physicochemical properties. In addition, acute toxicity and oxidative stress to Daphnia magna were evaluated to characterize toxicological properties. EfOMs showed similar properties to microbially derived organic matters having low hydrophobicity, which are totally different from SRNOM having high hydrophobicity. Moreover, acute toxicity and antioxidant enzyme activity in D. magna was largely dependent on fraction types of EfOMs. These findings suggest that EfOMs have different physicochemical and toxicological properties compared with those of NOMs, which needs to be further identified with various sources of EfOMs.

Evaluation of Natural Organic Matter Treatability and Disinfection By-Products Formation Potential using Model Compounds (정수처리 공정에서 모델 물질들을 이용한 천연유기물질 처리능 및 소독부산물 생성능 평가)

  • Son, Hee-Jong;Jung, Jong-Moon;Choi, Jin-Taek;Son, Hyung-Sik;Jang, Seong-Ho
    • Journal of Environmental Science International
    • /
    • v.22 no.9
    • /
    • pp.1153-1160
    • /
    • 2013
  • While a range of natural organic matter (NOM) types can generate high levels of disinfection by-products (DBPs) after chlorination, there is little understanding of which specific compounds act as precursors. Use of eight model compounds allows linking of explicit properties to treatability and DBP formation potential (DBPFP). The removal of model compounds by various treatment processes and their haloacetic acid formation potential (HAAFP) before and after treatment were recorded. The model compounds comprised a range of hydrophobic (HPO) and hydrophilic (HPI) neutral and anionic compounds. On the treatment processes, an ozone oxidation process was moderate for control of model compounds, while the HPO-neutral compound was most treatable with activated carbon process. Biodegradation was successful in removing amino acids, while coagulation and ion exchange process had little effect on neutral molecules. Although compared with the HPO compounds the HPI compounds had low HAAFP the ozone oxidation and biodegradation were capable of increasing their HAAFP. In situations where neutral or HPI molecules have high DBPFP additional treatments may be required to remove recalcitrant NOM and control DBPs.

Effect of Effluent Organic Matters on Estrogenic Activity Reduction of Bisphenol A by Photolysis (광분해 반응에 의한 비스페놀 A의 에스트로겐 활성 저감에 미치는 방류수 유기물질의 영향)

  • Yoo, Jisu;Na, Joolim;Jung, Jinho
    • Korean Journal of Environmental Biology
    • /
    • v.34 no.1
    • /
    • pp.48-55
    • /
    • 2016
  • This study investigates the effect of effluent organic matter (EfOM) from sewage wastewater treatment plants on estrogenic activity reduction of bisphenol A (BPA) by UV photolysis. The EfOM and Suwannee River natural organic matter (SR-NOM) as reference were isolated into hydrophobic (HPO), transphilic (TPI) and hydrophilic (HPI) fractions depending on polarity. The specific ultraviolet absorbance (SUVA) analysis indicated that EfOM showed similar properties to microbially derived organic matters with low hydrophobicity, which is different from SR-NOM having high hydrophobicity. UV irradiation upto 3 hr significantly reduced SUVA values of both EfOM and SR-NOM (p<0.0001), depending on the polarity of organic matters. In the absence of organic matters, the relative estrogenic activity (REA) of BPA ($5.0{\times}10^{-5}M$) was decreased from 86% to 63% by UV photolysis (2 hr). However, the decrease of mean REA was from 68% to 37% in the presence of organic matters, which was significantly independent on the type (EfOM or SR-NOM) and polarity (HPO, TPI or HPI) of organic matters (p>0.05). As a result, the reduced REA by UV photolysis of BPA with and without organic matters was 31% and 23%, respectively, suggesting that both EfOM and SR-NOM accelerated the photolytic reduction of BPA estrogenic activity.

The Removal of Natural Organic Matter and Disinfection By-Product Precursor by Ozone (오존처리에 의한 천연유기물질 변화 및 염소 소독부산물 전구물질 제어)

  • Son, Hee-Jong;Roh, Jae-Soon;Kim, Sang-Goo;Kang, Lim-Seok;Lee, Yong-Doo
    • Journal of Korean Society of Environmental Engineers
    • /
    • v.27 no.10
    • /
    • pp.1099-1107
    • /
    • 2005
  • The purpose of this study was to find the transformation of organic matter as well as chlorine by product formation potential with ozone dosage. The removal percents of $UV_{254}$ and DOC were $23%{\sim}65%$ and $2%{\sim}15%$ and THMFP and HAAFP were $17%{\sim}52%$ and $9%{\sim}29%$ respectively at $0.5{\sim}3\;mgO_3/mgDOC$ ozone dosage. The hydrophobic and transphobic organic matter were reduced to $37%{\sim}68%$ and $35%{\sim}64%$, on the other hand the hydrophilir organic matter was increased to $40%{\sim}49%$ at $0.5{\sim}3\;mgO_3/mgDOC$ ozone dosage. The produced THMFP and HAAFP from the hydrophobic and transphilic organic matter were decreased greatly with increasing ozone dosage but these by products were increased in the hydrophilic matter. The produced THMFP and HAAFP per unit DOC were decreased and reactivity was reduced greatly with increasing crone dosage. The removal rate of THMFP per unit DOC was much higher than HAAFP by ozone treatment. The Br-THMFP per unit DOC was much more removed than chloroformFP per unit DOC with increasing ozone dosage. and The removal rate of TCAAFP per unit DOC was increased with increasing ozone dosage but TCAAFP was not affected by ozone treatment. Br-HAAFP was decreased at $1\;mgO_3/mgDOC$ ozone dosage but was not more removed above $1\;mgO_3/mgDOC$ ozone dosage. Br-HAAFP had lower removal effect than Br-THMFP by ozone treatment. The optimal ozone dosage can be determined about $1\;mgO_3/mgDOC$ by considering both disinfection by product formation and economical efficiency.

Transport of Colloids and Contaminant in Riverbank Filtration (강변여과에서 콜로이드 물질과 오염물의 거동에 관한 연구)

  • Lee Sang-Il;Kim Dae-Hwan;Lee Sang-Sin;You Sang-Yeon
    • Journal of Korea Water Resources Association
    • /
    • v.39 no.6 s.167
    • /
    • pp.511-520
    • /
    • 2006
  • Riverbank filtration is a natural process, using alluvial aquifers to remove contaminants and pathogens in river water for the production of drinking water. In Korea, most of the drinking water is supplied by surface water in-take. However, maintaining the quality of the drinking water becomes more and more difficult due to the increase of contamination. In riverbank filtration, the understanding of contaminant transport is an important task for the production of high quality drinking water and for the maintenance of facilities. In this paper, the transport behavior of hydrophobic organic contaminants is investigated when contaminants coexist with dissolved organic matter (DOM) and bacteria. In the developed model, the aquifer is thought of as a four phase system: two mobile colloidal phases, an aqueous phase, and a stationary solid matrix phase. The model equations are solved numerically for various situations. Results indicate that the presence of colloidal matters can enhance the mobility of contaminant significantly and that partitioning coefficients play an important role in the process.

Removal of Dissolved Organic Matter by Ozone-biological Activated Carbon process (오존처리와 생물활성탄 공정에 의한 상수원수 중의 용존유기물 제거)

  • 이상훈;문순식;신종철;최광근;심상준;박대원;이진원
    • KSBB Journal
    • /
    • v.18 no.3
    • /
    • pp.211-216
    • /
    • 2003
  • The removal yield of dissolved organic matter in drinking water by biological activated carbon (BAC) process was investigated. The tested processes wer raw water-AC process (BAC1), raw water-ozonation-BAC process (BAC2), and raw water-ozonation-coagulation/sedimentation-BAC process (BAC3). The amounts of organic matter was measured as dissolved organic carbon (DOC), ulta-violet radiation at 254 nm wavelength ($UV_{254}$), total nitrogen (T-N), ammonia nitrogen (NH_3$-N), and total phosphate (T-P). As a results, 30.7% DOC was removed by BAC2 process, which showed higher removal efficiency than BAC1 or BAC3 processes. The removal yield of $UV_{254}$ in BAC1, BAC2, and BAC3 processes were observed as 45.3%, 44.6%, 58.4%, respectively. And the removal yield of ammonia nitrogen were 66%, 81%, 29% in each BAC processes. The optimal empty bed contact time (EBCT) of BAC processes was estimated as 10 minute. This study has shown that BAC process combined with ozone treatment was efficient for removing dissolved organic matter in water.

토양 유기물 분리 처리 방법이 비친수성 오염물질 흡착에 미치는 영향

  • Jeong Sang-Jo
    • Proceedings of the Korean Society of Soil and Groundwater Environment Conference
    • /
    • 2005.04a
    • /
    • pp.42-45
    • /
    • 2005
  • Accurate prediction of the fate and transport of contaminants in soils and sediments is very Important to environmental risk assessment and effective remediation of contaminated soils and sediments. The fate and transport of contaminants in subsurface are affected by geosorbents, especially carbonaceous materials including black carbon. Various physical and chemical treatment methods have been developed to separate different kinds of carbonaceous materials from soils and sediments. However, the effects of these separation methods on the properties of remaining carbonaceous materials including sorption capacity and linearity are unclear. The objective of this study is to determine if the chemical and thermal treatment methods previously used to separate different carbonaceous material fractions affect the properties of carbonaceous materials including longer term sorption capacity of hydrophobic organic contaminants. The results indicate that treatments with hydrochloric acid (HCl)/hydrofluoric acid (HF), trifluoroacetic acid (TFA), sodium hydroxide (NaOH) may not affect the sorption capacity of black carbon reference materials such as char and soot, however, treatments with acid dichromate $(K_2Cr_2O_7/H_2SO_4)$ and heat $(375^{\circ}C)$ for 24 hours in sufficient of oxygen) decrease the sorption capacity of them. The results of longer term sorption isotherm indicate that 2 days might be enough for trichloroethene (TCE) to equilibrate apparently with treated black carbon reference materials. The results suggest that acid dichromate and heat treatments may not appropriate method to investigate sorption properties of black carbon in soils and sediments.

  • PDF