DOI QR코드

DOI QR Code

Effect of Effluent Organic Matters on Estrogenic Activity Reduction of Bisphenol A by Photolysis

광분해 반응에 의한 비스페놀 A의 에스트로겐 활성 저감에 미치는 방류수 유기물질의 영향

  • Yoo, Jisu (Division of Environmental Science & Ecological Engineering, Korea University) ;
  • Na, Joolim (Division of Environmental Science & Ecological Engineering, Korea University) ;
  • Jung, Jinho (Division of Environmental Science & Ecological Engineering, Korea University)
  • 유지수 (고려대학교 생명과학대학 환경생태공학과) ;
  • 나주림 (고려대학교 생명과학대학 환경생태공학과) ;
  • 정진호 (고려대학교 생명과학대학 환경생태공학과)
  • Received : 2016.02.01
  • Accepted : 2016.02.15
  • Published : 2016.03.31

Abstract

This study investigates the effect of effluent organic matter (EfOM) from sewage wastewater treatment plants on estrogenic activity reduction of bisphenol A (BPA) by UV photolysis. The EfOM and Suwannee River natural organic matter (SR-NOM) as reference were isolated into hydrophobic (HPO), transphilic (TPI) and hydrophilic (HPI) fractions depending on polarity. The specific ultraviolet absorbance (SUVA) analysis indicated that EfOM showed similar properties to microbially derived organic matters with low hydrophobicity, which is different from SR-NOM having high hydrophobicity. UV irradiation upto 3 hr significantly reduced SUVA values of both EfOM and SR-NOM (p<0.0001), depending on the polarity of organic matters. In the absence of organic matters, the relative estrogenic activity (REA) of BPA ($5.0{\times}10^{-5}M$) was decreased from 86% to 63% by UV photolysis (2 hr). However, the decrease of mean REA was from 68% to 37% in the presence of organic matters, which was significantly independent on the type (EfOM or SR-NOM) and polarity (HPO, TPI or HPI) of organic matters (p>0.05). As a result, the reduced REA by UV photolysis of BPA with and without organic matters was 31% and 23%, respectively, suggesting that both EfOM and SR-NOM accelerated the photolytic reduction of BPA estrogenic activity.

본 연구는 자외선 광분해에 의한 비스페놀 A (BPA)의 에스트로겐 활성 저감에 미치는 하수처리장 방류수 유기물질의 영향을 조사하였다. 방류수 유기물질과 표준으로 사용한 스와니강 자연 유기물질은 극성에 따라 소수성, 반친수성, 친수성 분획으로 분리하였다. 특이 자외선 흡수 (SUVA) 분석 결과, 방류수 유기물질은 높는 소수성을 가지고 있는 자연 유기물질과 다르게 소수성이 낮은 미생물 기원 유기물질과 유사한 특성을 나타내었다. 3시간의 자외선 조사는 방류수 및 자연 유기물질의 극성에 따라 SUVA 값을 유의하게 감소시켰다 (p<0.0001). 유기물질이 없는 조건에서, BPA($5.0{\times}10^{-5}M$)의 상대 에스트로겐 활성도는 자외선 광분해에 의해 86%에서 63%로 감소하였다. 그러나 유기물질이 있는 조건에서 상대 에스트로겐 활성도는 평균적으로 68%에서 37%로 감소하였으며, 유기물질의 종류 (방류수 또는 자연유기물질) 및 극성 (소수성, 반친수성, 친수성)과 유의한 차이를 나타내지 않았다 (p>0.05). 결과적으로, 유기물질이 있고 없는 조건에서 자외선 광분해에 의해 감소한 BPA의 상대 에스트로겐 활성도는 각각 31%와 23%였으며, 이것은 방류수와 자연 유기물질 모두 광분해에 의한 BPA의 에스트로겐 활성 저감을 촉진시킨다는 것을 제시한다.

Keywords

References

  1. Ahn Y, D Yang, S Chae, J Lim and K Lee. 2009. Characteristics of disinfection and removal of 2-MIB using pulse UV lamp. J. Korea. Soc. Water. Wastewater 23:69-75.
  2. Baken S, F Degryse, L Verheyen, R Merckx and E Smolders. 2011. Metal complexation properties of freshwater dissolved organic matter are explained by its aromaticity and by anthropogenic ligands. Environ. Sci. Technol. 45:2584-2590. https://doi.org/10.1021/es103532a
  3. Caupos E, P Mazellier and JP Croue. 2011. Photodegradation of estrone enhanced by dissolved organic matter under simulated sunlight. Water Res. 45:3341-3350. https://doi.org/10.1016/j.watres.2011.03.047
  4. Chin YP, GR Aiken and KM Danielsen. 1997. Binding of pyrene to aquatic and commercial humic substances: The role of molecular weight and aromaticity. Environ. Sci. Technol. 31:1630-1635. https://doi.org/10.1021/es960404k
  5. Chin YP, PL Miller, L Zeng, K Cawley and LK Weavers. 2004. Photosensitized degradation of bisphenol A by dissolved organic matter. Environ. Sci. Technol. 38:5888-5894. https://doi.org/10.1021/es0496569
  6. Han J and J Sohn. 2014. Behavior of organic matter, chlorine residual and disinfection by-products formation (DBPs) during UV treatment of wastewater treatment plant effluents. J. Korea. Soc. Water. Wastewater 28:61-72. https://doi.org/10.11001/jksww.2014.28.1.61
  7. Kalscheur KN, RR Penskar, AD Daley, SM Pechauer, JJ Kelly, CG Peterson and KA Gray. 2012. Effects of anthropogenic inputs on the organic quality of urbanized streams. Water Res. 46:2515-2524. https://doi.org/10.1016/j.watres.2012.01.043
  8. Kang SW, J Seo, BC Lee, S Kim and J Jung. 2010. Reduction of estrogenic activity by gamma-ray treatment. J. Korean. Soc. Water Qual. 26:948-953.
  9. Lee J, J Cho, SH Kim and SD Kim. 2011. Influence of $17{\beta}$-estradiol binding by dissolved organic matter isolated from wastewater effluent on estrogenic activity. Ecotoxicol. Environ. Saf. 74:1280-1287. https://doi.org/10.1016/j.ecoenv.2011.02.010
  10. Leech DM, MT Snyder and RG Wetzel. 2009. Natural organic matter and sunlight accelerate the degradation of $17{\beta}$-estradiol in water. Sci. Total. Environ. 407:2087-2092. https://doi.org/10.1016/j.scitotenv.2008.11.018
  11. Leenheer JA. 1994. Chemistry of dissolved organic matter in rivers, lakes, and reservoirs, Environmental Chemistry of Lakes and Reservoirs, Chapter 7, 195-221.
  12. Liang S, JH Min, MK Davis, JF Green and DS Remer. 2003. Use of pulsed-UV processes to destroy NDMA. J. Am. Water. Works. Assoc. 95:121-131. https://doi.org/10.1002/j.1551-8833.2003.tb10459.x
  13. Lim J and J Hur. 2013. Changes in molecular weight of dissolved organic matter by photodegradation and their subsequent effects on disinfection by-product formation potential. J. Kor. Soc. Environ. Eng. 35:769-775. https://doi.org/10.4491/KSEE.2013.35.11.769
  14. Louis Y, B Pernet-Coudrier and G Varrault. 2014. Implications of effluent organic matter and its hydrophilic fraction on zinc (II) complexation in rivers under strong urban pressure: Aromaticity as an inaccurate indicator of DOM-metal binding. Sci. Total. Environ. 490:830-837. https://doi.org/10.1016/j.scitotenv.2014.04.123
  15. Ministry of environment. 2012. Statistics of sewerage '2011'.
  16. Pernet-coudrier B, L Clouzot, G Varrault, M Tusseau-vuillemin, A Verger and J Mouchel. 2008. Dissolved organic matter from treated effluent of a major wastewater treatment plant: Characterization and influence on copper toxicity. Chemosphere 73:593-599. https://doi.org/10.1016/j.chemosphere.2008.05.064
  17. Quaranta ML, MD Mendes and AA MacKay. 2012. Similarities in effluent organic matter characteristics from Connecticut wastewater treatment plants. Water Res. 46:284-294. https://doi.org/10.1016/j.watres.2011.10.010
  18. Shiraish F, T Okumura, M Nomachi, S Serizawa, J Nishikawa, JS Edmonds, H Shiraishi and M Morita. 2003. Estrogenic and thyroid hormone activity of a series of hydroxyl-polychlorinated biphenyls. Chemosphere 52:33-42. https://doi.org/10.1016/S0045-6535(03)00261-3
  19. Tanghe T, G Devriese and W Verstraete. 1999. Nonylphenol and estrogenic activity in aquatic environmental sample. J. Environ. Qual. 28:702-709.
  20. Yoo J, B Lee, J Hur and J Jung. 2014. Physicochemical and toxicological properties of effluent organic matters from sewage and industrial treatment plants. J. Korean. Soc. Water. Qual. 30:80-86. https://doi.org/10.15681/KSWE.2014.30.1.080