• Title/Summary/Keyword: Hydrophobic interactions

Search Result 148, Processing Time 0.023 seconds

Crystal Structure of a Highly Thermostable α-Carbonic Anhydrase from Persephonella marina EX-H1

  • Kim, Subin;Sung, Jongmin;Yeon, Jungyoon;Choi, Seung Hun;Jin, Mi Sun
    • Molecules and Cells
    • /
    • v.42 no.6
    • /
    • pp.460-469
    • /
    • 2019
  • Bacterial ${\alpha}-type$ carbonic anhydrase (${\alpha}-CA$) is a zinc metalloenzyme that catalyzes the reversible and extremely rapid interconversion of carbon dioxide to bicarbonate. In this study, we report the first crystal structure of a hyperthermostable ${\alpha}-CA$ from Persephonella marina EX-H1 (pmCA) in the absence and presence of competitive inhibitor, acetazolamide. The structure reveals a compactly folded pmCA homodimer in which each monomer consists of a 10-stranded ${\beta}-sheet$ in the center. The catalytic zinc ion is coordinated by three highly conserved histidine residues with an exchangeable fourth ligand (a water molecule, a bicarbonate anion, or the sulfonamide group of acetazolamide). Together with an intramolecular disulfide bond, extensive interfacial networks of hydrogen bonds, ionic and hydrophobic interactions stabilize the dimeric structure and are likely responsible for the high thermal stability. We also identified novel binding sites for calcium ions at the crystallographic interface, which serve as molecular glue linking negatively charged and otherwise repulsive surfaces. Furthermore, this large negatively charged patch appears to further increase the thermostability at alkaline pH range via favorable charge-charge interactions between pmCA and solvent molecules. These findings may assist development of novel ${\alpha}-CAs$ with improved thermal and/or alkaline stability for applications such as $CO_2$ capture and sequestration.

Electron Transfer to Hydroxylase through Component Interactions in Soluble Methane Monooxygenase

  • Lee, Chaemin;Hwang, Yunha;Kang, Hyun Goo;Lee, Seung Jae
    • Journal of Microbiology and Biotechnology
    • /
    • v.32 no.3
    • /
    • pp.287-293
    • /
    • 2022
  • The hydroxylation of methane (CH4) is crucial to the field of environmental microbiology, owing to the heat capacity of methane, which is much higher than that of carbon dioxide (CO2). Soluble methane monooxygenase (sMMO), a member of the bacterial multicomponent monooxygenase (BMM) superfamily, is essential for the hydroxylation of specific substrates, including hydroxylase (MMOH), regulatory component (MMOB), and reductase (MMOR). The diiron active site positioned in the MMOH α-subunit is reduced through the interaction of MMOR in the catalytic cycle. The electron transfer pathway, however, is not yet fully understood due to the absence of complex structures with reductases. A type II methanotroph, Methylosinus sporium 5, successfully expressed sMMO and hydroxylase, which were purified for the study of the mechanisms. Studies on the MMOH-MMOB interaction have demonstrated that Tyr76 and Trp78 induce hydrophobic interactions through π-π stacking. Structural analysis and sequencing of the ferredoxin domain in MMOR (MMOR-Fd) suggested that Tyr93 and Tyr95 could be key residues for electron transfer. Mutational studies of these residues have shown that the concentrations of flavin adenine dinucleotide (FAD) and iron ions are changed. The measurements of dissociation constants (Kds) between hydroxylase and mutated reductases confirmed that the binding affinities were not significantly changed, although the specific enzyme activities were significantly reduced by MMOR-Y93A. This result shows that Tyr93 could be a crucial residue for the electron transfer route at the interface between hydroxylase and reductase.

Binding Model of Amentoflavone to Peroxisome Proliferator-Activated Receptor γ

  • Lee, Jee-Young;Kim, Jin-Kyoung;Lee, So-Jung;Lee, Eun-Jung;Shin, So-Young;Jin, Qinglong;Yoon, Do-Young;Woo, Eun-Rhan;Kim, Yang-Mee
    • Bulletin of the Korean Chemical Society
    • /
    • v.33 no.5
    • /
    • pp.1475-1479
    • /
    • 2012
  • Human peroxisome proliferator-activated receptor gamma ($hPPAR{\gamma}$) has been implicated in numerous pathologies, including obesity, diabetes, and cancer. In this study, we verified that amentoflavone is an agonist of $hPPAR{\gamma}$ and probed the molecular basis of its action. It was demonstrated that amentoflavone bound $hPPAR{\gamma}$ with high (picomolar) affinity and increased the binding between $hPPAR{\gamma}$ and steroid receptor coactivator-1 (SRC-1) by approximately 4-fold. Based on a docking study, for the first time, we propose a model of amentoflavone and $hPPAR{\gamma}$ binding in which amentoflavone forms three hydrogen bonds with the side chains of His323, Tyr327, and Arg280 in $hPPAR{\gamma}$ and participates in two hydrophobic interactions.

Structural and Functional Insight into Proliferating Cell Nuclear Antigen

  • Park, So Young;Jeong, Mi Suk;Han, Chang Woo;Yu, Hak Sun;Jang, Se Bok
    • Journal of Microbiology and Biotechnology
    • /
    • v.26 no.4
    • /
    • pp.637-647
    • /
    • 2016
  • Proliferating cell nuclear antigen (PCNA) is a critical eukaryotic replication accessory factor that supports DNA binding in DNA processing, such as DNA replication, repair, and recombination. PCNA consists of three toroidal-shaped monomers that encircle double-stranded DNA. The diverse functions of PCNA may be regulated by its interactions with partner proteins. Many of the PCNA partner proteins generally have a conserved PCNA-interacting peptide (PIP) motif, located at the N- or C- terminal region. The PIP motif forms a 310 helix that enters into the hydrophobic groove produced by an interdomain-connecting loop, a central loop, and a C-terminal tail in the PCNA. Post-translational modification of PCNA also plays a critical role in regulation of its function and binding partner proteins. Structural and biochemical studies of PCNA-protein will be useful in designing therapeutic agents, as well as estimating the outcome of anticancer drug development. This review summarizes the characterization of eukaryotic PCNA in relation to the protein structures, functions, and modifications, and interaction with proteins.

Effect of Process Parameters and Kraft Lignin Additive on The Mechanical Properties of Miscanthus Pellets

  • Min, Chang Ha;Um, Byung Hwan
    • Journal of the Korean Wood Science and Technology
    • /
    • v.45 no.6
    • /
    • pp.703-719
    • /
    • 2017
  • Miscanthus had a higher lignin content (19.5 wt%) and carbohydrate (67.6 wt%) than other herbaceous crops, resulting in higher pellet strength and positive effect on combustion. However, miscanthus also contains a high amount of hydrophobic waxes on its outer surface, cuticula, which limits the pellet quality. The glass transition of lignin and cuticula were related to forming inter-particle bonding, which determined mechanical properties of pellet. To determine the effects of surface waxes, both on the pelletizing process and the pellet strength were compared with raw and extracted samples through solvent extraction. In addition, to clarify the relationship between pellet process parameters and bonding mechanisms, the particle size and temperature are varied while maintaining the moisture content of the materials and the die pressure at constant values. Furthermore, kraft lignin was employed to determine the effect of kraft lignin as an additive in the pellets. As results, the removal of cuticula through ethanol extractions improved the mechanical properties of the pellet by the formation of strong inter-particle interactions. Interestingly, the presence of lignin in miscanthus improves its mechanical properties and decreases friction against the inner die at temperatures above the glass transition temperature ($T_g$) of lignin. Consequently, it could found that the use of kraft lignin as an additive in pellet reduced friction in the inner die upon reaching its glass transition temperature.

Effects of Atmospheric Ozone on the Rice Blast Pathogen Pyricularia grisea

  • Hur, Jae-Seoun;Kim, Ki-Woo;Kim, Pan-Gi;Yun, Sung-Chul;Park, Eun-Woo
    • The Plant Pathology Journal
    • /
    • v.16 no.1
    • /
    • pp.19-24
    • /
    • 2000
  • The direct effects of acute $\textrm{O}_3$ on the growth, sporulation and infection of Pyricularia grisea, rece blast pathogen, were investigated to understand the interactions between ozone and the pathogen. Acute exposure of 200 nl $\textrm{l}^{-1}$ ozone for 8 h significantly reduced conidia germination on water atar. Ozone exposure of 200 nl $\textrm{l}^{-1}$ for 8h per day for 5 days had no effect on increase in colony diameter, but severely damaged actively growing aerial mycelia. However, the damage to mycalia was recovered during the following 16 h exposure of unpolluted air. Conidial production was also stimulated by the acute ozone exposure for 5 days. The conidia exposed to the acute ozone for 5 days normally germinates but slightly reduce appressoria formation on rice leaf. However, the conidia produced by artificial stimulation under the same ozone concentration for 10 days showed significant reduction in appressorea for mation on a hydrophobic film. This study suggests that the acute ozone could ingibit appressoria formation as well as vegetative growth of the pathogen, resulting in decrease in rece blast development in the field during summer when high ozone episodes could occur occasionally.

  • PDF

Butyrylcholinesterase Inhibitory Activity and GC-MS Analysis of Carica papaya Leaves

  • Khaw, Kooi-Yeong;Chear, Nelson Jeng Yeou;Maran, Sathiya;Yeong, Keng Yoon;Ong, Yong Sze;Goh, Bey Hing
    • Natural Product Sciences
    • /
    • v.26 no.2
    • /
    • pp.165-170
    • /
    • 2020
  • Carica papaya is a medicinal and fruit plant owing biological activities including antioxidant, antiviral, antibacterial and anticancer. The present study aims to investigate the acetyl (AChE) and butyryl (BChE) cholinesterase inhibitory potentials of C. papaya extracts as well as their chemical compositions. The chemical composition of the active extract was identified using a gas chromatography-mass spectrometry (GC-MS). Ellman enzyme inhibition assay showed that the alkaloid-enriched leaf extract of C. papaya possessed significant anti-BChE activity with an enzyme inhibition of 75.9%. GC-MS analysis showed that the alkaloid extract composed mainly the carpaine (64.9%) - a major papaya alkaloid, and some minor constituents such as aliphatic hydrocarbons, terpenes and phenolics. Molecular docking of carpaine revealed that this molecule formed hydrogen bond and hydrophobic interactions with choline binding site and acyl pocket. This study provides some preliminary findings on the potential use of C. papaya leaf as an herbal supplement for the prevention and treatment of Alzheimer's disease.

Mechanism of Fatty Acid Transfer between Fatty Acid Binding Proteins and Phospolipid Model Membranes (지방산 결합단백질과 인지질막 사이의 지방산이동기전)

  • 김혜경
    • Journal of Nutrition and Health
    • /
    • v.30 no.8
    • /
    • pp.930-935
    • /
    • 1997
  • Fatty acid binging proteins(FABP) are distinct but related gene productes which are found in many mamalian cell types. FABP bind long chain fatty acids in vitro. However, their functions and mechanisms of action, in vivo, remain unknown . Also not known is whether all FABP function similaryly in their respective cell types. or whether different FABP have unique functions. The puropose of the present study was to assess whether different members of the FABP family exhibit different structural and function properties. A comparison was made between heart(H-FABP) and liver (L-FABP). The results show that the binding sites of both FABP are hydrophobic in nature, although the L-FABP site is more nonpolar than the H-FABP site. Additionally, the bound ligand experiences less motional constraint within the H-FABP binding site than within the L-FABP binding site. In accordance with these differences in structural properties, it was found that anthroyloxy-fatty acid transfer from H-FABP to membranes is markedly faster than from L-FABP. moreover, the mechanism of fatty acid transfer to phospholipid membranes appears to occur via transient collisional interactions between H-FABP and membranes. In contrast , transfer of fatty acid from L-FABP occurs via an aqueous diffusion mechanism.

  • PDF

Conformational Switch and Functional Regulation of Proteins (단백질의 구조 전환과 기능 조절)

  • Yu, Myeong-Hee
    • Proceedings of the Korean Institute of Electrical and Electronic Material Engineers Conference
    • /
    • 2001.11b
    • /
    • pp.3-6
    • /
    • 2001
  • In common globular proteins, the native form is in its most stable state. However, the native form of inhibitory serpins (serine protease inhibitors) and some viral membrane fusion proteins is in a metastable state. Metastability in these proteins is critical to their biological functions. Our previous studies revealed that unusual interactions, such as side-chain overpacking, buried polar groups, surface hydrophobic pockets, and internal cavities are the structural basis of the native metastability. To understand the mechanism by which these structural defects regulate protein functions, cavity-filling mutations of a 1-antitrypsin, a prototype serpin, were characterized. Increasing conformational stability is correlated with decreasing inhibitory activity. Moreover, the activity loss appears to correlate with the decrease in the rate of the conformational switch during complex formation with a target protease. We also increased the stability of a 1-antitrypsin greatly via combining various stabilizing single amino acid substitutions that were distributed throughout the molecule. The results showed that a substantial increase of stability, over 13 kcal/mol, affected the inhibitory activity with a correlation of 11% activity loss per kcal/mol. The results strongly suggest that the native metastability of proteins is indeed a structural design that regulates protein functions and that the native strain of a 1-antitrypsin distributed throughout the molecule regulates the inhibitory function in a concerted manner.

  • PDF

Conformational Switch and Functional Regulation of Proteins (단백질의 구조 전환과 기능 조절)

  • 유명희
    • Electrical & Electronic Materials
    • /
    • v.14 no.12
    • /
    • pp.3-6
    • /
    • 2001
  • In common globular proteins, the native form is n its most stable state. However, the native form of inhibitory serpins (serine protease inhibitors) and some viral membrane fusion proteins is in a metastable state. Metastability in these proteins is critical to their biological functions. Our previous studies revealed that unusual interactions, such as side-chain overpacking, buried polar groups, surface hydrophobic pockets, ad internal cavities are the structural basis of the native metastability. To understand the mechanism by which these structural defects regulate protein functions, cavity-filling mutations of $\alpha$1-antitrypsin, a prototype serpin, were characterized. Increasing conformational stability is correlated with decreasing inhibitory activity. Moreover, the activity loss appears to correlate with the decrease in the rate of the conformational switch during complex formation with a target protease. We also increased the stability of $\alpha$1-antitrypsin greatly via combining various stabilizing single amino acid substitutions that were distributed throughout the molecule. The results showed that a substantial increase of stability, over 13 kcal/mol, affected the inhibitory activity with a correlation of 11% activity loss per kcal/mol. The results strongly suggest that the native metastability of proteins is indeed a structural design that regulates protein functions and that the native strain of $\alpha$1-antitrypsin distributed throughout the molecule regulates the inhibitory function in a concerted manner.

  • PDF