• Title/Summary/Keyword: Hydrophilic surface

Search Result 703, Processing Time 0.024 seconds

Development of micro- and nanostructures mimicking natural leaf surfaces for controlled hydrophilic and hydrophobic property

  • Kim, Daun;Park, Sunho;Lee, Dohyeon;Nam, Hyeun;Kim, Jangho
    • Proceedings of the Korean Society for Agricultural Machinery Conference
    • /
    • 2017.04a
    • /
    • pp.110-110
    • /
    • 2017
  • Biological systems offer unique principles for the design and fabrication of engineering platforms (i.e., popularly known as "Biomimetics") for various applications in many fields. For example, the lotus leaves exhibit unique surfaces consisting of evenly distributed micro and nanostructures. These unique surfaces of lotus leaves have the ability of superhydrophobic property to avoid getting wet by the surrounding water (i.e., Lotus effect). Inspired by the surface topographies of lotus leaves, the artificial superhydrophobic surfaces were developed using various micro- and nanoengineering. Here, we propose new platforms that can control hydrophilic and hydrophobic property of surfaces by mimicking micro- and nanosurfaces of various natural leaves such as common camellia, hosta plantaginea, and lotus. Using capillary force lithography technology and polymers in combination with biomimetic design principle, the unique micro- and nanostructures mimicking natural surfaces of common camellia, hosta plantaginea, and lotus were designed and fabricated. We also demonstrated that the replicated polymeric surfaces had different hydrophilic and hydrophobic properties according to the mimicking the natural leaf surfaces, which could be used as a simple, but powerful methodology for design and fabrication of controlled hydrophilic and hydrophobic platforms for various applications in the field of agriculture and biological engineering.

  • PDF

Estimation of energy self-sufficiency in municipal wastewater treatment plant using photovoltaic power simulated by azimuth and hydrophilic coating (방위각과 초친수코팅에 따른 태양광발전량 시뮬레이션과 하수처리장 에너지자립율 산정)

  • An, Young-Sub;Kim, Sung-Tae;Kang, Ji-Hoon;Chae, Kyu-Jung;Yoon, Jong-Ho
    • KIEAE Journal
    • /
    • v.11 no.6
    • /
    • pp.133-138
    • /
    • 2011
  • This paper presents energy self-sufficiency simulated in municipal wastewater treatment plants (WWTPs) by adopting solar energy production systems that were simulated by varying azimuth and super-hydrophilic coating on the surface of photovoltaic (PV). Relative to the national average energy consumption in WWTPs, the employment of 100 kW PV system was simulated to achieve 2.75% of energy self-sufficiency. The simulated results suggested that the installation of PVs toward South or Southwest would produce the highest energy self-sufficiency in WWTPs. When super-hydrophilic coating was employed in the conventional PV, 5% of additional solar energy production was achievable as compared to uncoated conventional PV. When 100 kW of PV system was installed in a future test-bed site, Kihyeung Respia WWTP located in Yongin, South Korea, the energy self-sufficiency by solar power was simulated to be 1.77%. The simulated solar power production by azimuth and super-hydrophilic coating will be useful reference for practitioners in designing the solar PV systems in the WWTPs.

Clinical Application of Hydrophilic Polyurethane Foam in a Dog with Secondary Infection in the Burned Area (화상부위에 이차감염이 발생한 개에서 Hydrophilic Polyurethane Foam의 임상적 적용)

  • Kim, Se-Eun;Shim, Kyung-Mi;Bae, Chun-Sik;Choi, Seok-Hwa;Kang, Seong-Soo
    • Journal of Veterinary Clinics
    • /
    • v.27 no.1
    • /
    • pp.121-124
    • /
    • 2010
  • Thermal burn occurred in the anesthetized dog as a result of using hot pack to treat hypothermia. After hospital discharge, thermal burn leaded to secondary infection due to dog bites of the other dog in the house. After secondary infection, the treatment was performed with medication and bandaging. Because of the pain and infection from the wound, carprofen (2 mg/kg bid) and amoxicillin (20 mg/kg bid) were administrated orally for 40 days. And for 35 days, wet-to-dry gauze dressing was used to absorb purulent exudate. During this period, the burn eschar was removed completely from the burn site. After 35 days, the hydrophilic polyurethane foam ($Medifoam^{(R)}$, Ildong Pharm, Co., Korea) was admitted to the burn site for 30 days. $Medifoam^{(R)}$ made healing rate of the wound faster because the inner layer did not adhered to the wound, and newly formed tissue was protected. The second layer, hydrophilic absorptive layer absorbed excessive fluid and kept the wound surface moist. After 65 days after thermal burn, the wound was healed completely.

Surface Properties of Polyimide Modified with He/O2/NF3 Atmospheric Pressure RF Dielectric Barrier Discharge (대기압 RF DBD 방전으로 개질된 폴리이미드의 표면특성)

  • Lee, Su-Bin;Kim, Yoon-Kee;Kim, Jeong-Soon
    • Korean Journal of Materials Research
    • /
    • v.16 no.9
    • /
    • pp.543-549
    • /
    • 2006
  • Polyimides (PI) are treated with $He/O_2$ and $He/O_2/NF_3$ atmospheric pressure rf dielectric barrier discharge in order to investigate the roles of $NF_3$ that is one of the PI etching gases. Surface changes are analyzed by x-ray photoelectron spectroscopy (XPS), atomic force microscopy (AFM), and contact angle measurement. The surface roughness of PI and the ratio of C=O, which is hydrophilic functional group, is more increased by $He/O_2/NF_3$ discharge than by $He/O_2$ discharge. The C=O species on the PI surface is increased up to 30 percent with rf power. The surface roughness of PI is increased from 0.4 to 11 nm with rf power. The water drop contact angles on PI, however, are reduced from $65^{\circ}\;to\;9^{\circ}$ by plasma treatment independently of $NF_3$.

Effect of Oxygen Plasma Treatment on the Surface and Tensile Properties of Stainless Steel Fibers (산소 플라즈마 처리가 스테인레스 스틸 섬유의 표면 및 인장특성에 미치는 영향)

  • Kwon, MiYeon;Lim, Dae Young;Lee, Seung Goo
    • Textile Coloration and Finishing
    • /
    • v.34 no.2
    • /
    • pp.102-108
    • /
    • 2022
  • The physicochemical properties of stainless steel fibers which were modified by oxygen plasma treatment were analyzed through microscopy and XPS analysis. The wettability of the surface of the stainless steel fiber was observed by measuring water contact angle to find out the effect of the plasma treatment time on the surface characteristics of the stainless steel fiber. In addition, in order to understand the effect of oxygen plasma treatment on the deterioration of the stainless steel fiber properties, the physical properties due to plasma treatment was investigated by measuring the weight reduction, tensile strength, elongation, tensile modulus of the stainless steel fibers according to the treatment time. As a result, the stainless steel fiber surface was etched by the oxygen plasma and the surface became more wettable by the introduction of hydrophilic functional groups. However the physical properties of the stainless steel fiber were not significantly deteriorated even if the surface of the stainless steel fiber made hydrophilic.

Micro-particles in a Nanoliter Droplet Dispensed by a Pneumatic Dispensing System and Its Measurement (공압 디스펜싱 시스템을 이용한 나노리터 액적에 포함된 미세 입자의 분주 및 측정)

  • Lee, Sang-Min;Kim, Joon-Won
    • Journal of the Korean Society for Precision Engineering
    • /
    • v.29 no.8
    • /
    • pp.913-919
    • /
    • 2012
  • This paper presents results for dispensing and measuring micro-particles using a pneumatic dispensing system. Particle-suspended liquid droplets were dispensed and analyzed quantitatively at various particle concentrations and applied pressures. By using a developed experimental setup, the number of particles and the particle volume ratio in sequentially dispensed droplets were measured. Hydrophilic and hydrophobic surfaces were tested to find a suitable surface for counting the number of particle. It was confirmed that the dispensed particles concentrated into the center of the droplet on the smooth CD surface after evaporation of liquid. As the applied positive pressure increased, the number of particles per droplet increased consistently and the volume fraction of particles remained constant.

Experimental Study of Condensation Heat Transfer in Pre-heating Exchanger to the Type of Hydrophilic Surface Treatment (친수 표면처리 종류에 따른 공기 예열 열교환기의 응축 열전달 실험적 연구)

  • Seok, Sungchul;Chung, Tae-Yong;Chin, Donghoon;Hwang, Seungsik;Choi, Gyuhong;Park, Jaewon
    • 한국연소학회:학술대회논문집
    • /
    • 2012.11a
    • /
    • pp.237-238
    • /
    • 2012
  • Recently, an energy-saving due to the energy utilisation efficiency enhancement is important. In order to improve the heat efficiency of the general residential boiler, We performed an experiment of condensation heat transfer to air pre-heat exchanger adhered to the condensing boiler. In this research, We analyze the heat transfer performance through the hydrophilic surface treatment(plasma, etching). The results of the research, On plasma and etching treated surface, Overall heat transfer coefficient is displayed the tendency to increase.

  • PDF

A Characteristics Study on the Visualization and Heat Transfer of the Frost Formation Structure Variation by Control Plate Surface Temperature (표면온도 제어에 의한 착상층 구조변화의 가시화 및 열전달 특성 연구)

  • Kim Kyung-Chun;Ko Choon-Sik;Jeong Jae-Hong;Ko Young-Hwan;Shin Jong-min
    • 한국가시화정보학회:학술대회논문집
    • /
    • 2002.11a
    • /
    • pp.55-58
    • /
    • 2002
  • To control the frost formation, a temperature variation of the cooling plate and characteristics on hydrophilic and hydrophobic surfaces was attempted. As a temperature variation of the cooling plate, being closely related to the frost layer density of frost layer is found to be affected by the melting process inside the frost layer during the heating period. At characteristics on surface, completely different structures of frost are appeared in the initial stage of frost formation due to the difference in surface conditions, while those effects are vanished with time. It is found that the frost thickness, density and heat flux characteristics are closely associated with the frost structure.

  • PDF

Static Characteristic of Polyester Fiber by LT-Plasma Polymerization (저온플라즈마중합 처리한 폴리에스터 섬유의 대전특성)

  • 서은덕;강영립;박찬언
    • Textile Coloration and Finishing
    • /
    • v.4 no.4
    • /
    • pp.110-116
    • /
    • 1992
  • For the modification of PET surface, Perfluoropropene and Methyl alcohol were LT-plasma polymerized on the PET fabrics as thin films by means of 13.56 MHz radio frequency generator. The surface properties of PET fabrics were modified from hydrophobic to hydrophilic by application of the postplasma reaction of thin films. The evidence of the modification was identified by observation of the presence of hydroxy group in IR spectrum and the evaluation of degree of hydrophilicity was performed by measuring frictional static voltage of PET fabric with cotton fabric. For the case of modification by PFP, the result performed at the condition of 25 W, 70 m torr has shown to be effective, and for MeOH, result performed at the condition of 25 W, 100 m torr effective. The effect of hydrophilic surface modification of MeOH plasma polymer was superior to that of PFP-plasma polymer.

  • PDF