• 제목/요약/키워드: Hydrolyzed Al species

검색결과 8건 처리시간 0.017초

개선된 Ferron 분석 비교를 통한 Al(III) 가수분해종 특성 연구 (Comparison of the characteristics of Al(III) hydrolyzed species by improved ferron assay test)

  • 윤미형;강임석
    • 상하수도학회지
    • /
    • 제36권3호
    • /
    • pp.177-186
    • /
    • 2022
  • In this study, newly improved Ferron assay test haved on timed spectrometry was used for the determination of hyolrolytic Al species presented in PACl coagulant. The color development reagent ferron was prepared by using conventional method and two newly developed methods. Then the ferron assay test was used to compare and analyze the distribution of Al(III) hydrolyzed species presented in the prepared PACl and alum. The preparing method of reagent A required an aging period of 7 days by adding a hydroxylamine hydroxide and a 1,10-phenanthroline monohydrate reagent, whereas the preparing method of reagent B was used as a coloring agent immediately without aging time. The regression analysis between UV absorbance and Al concentrations of conventional method and newly developed method of ferron reagents in low-concentration aluminum solutions and high-concentration aluminum solutions, showed the correlation coefficients of 0.999 or higher, as showing high correlations of conventional method and newly developed method. Applying Ferron assay test, Al species in the PACls and alum were classified as Ala(monomeric Al), Alb (polymeric Al), and Alc (colloidal and precipitated Al). Distribution of Al(III) hydrolyzed species according to the preparation of ferron colorimetric reagents was similar.

응집 pH와 응집제 종류에 따른 Al(III)가수분해종 특성변화에 대한 연구 (A Study of Al(III) Hydrolysis Species Characterization under Various Coagulation Condition)

  • 송유경;정철우;손인식
    • 한국물환경학회지
    • /
    • 제22권5호
    • /
    • pp.958-967
    • /
    • 2006
  • The overall objective of this research was to find out the role of rapid mixing conditions in the species of hydrolyzed Al(III) formed by Al(III) coagulants and to evaluate the distribution of hydrolyzed Al(III) species by coagulant dose and coagulation pH. When an Al(III) salt was added to water, monomers, polymers and solid precipitates may form. Different Al(III) coagulants (alum and PSOM) show to have different Al(III) species distribution over a rapid mixing condition. During the rapid mixing period, for alum, formation of dissolved AI(III) (monomer and polymer) increases, but for PSOM, precipitates of $Al(OH)_{3(S)}$ increases rapidly. During the rapid mixing period, for high coagulant dose, Al-ferron reaction increases rapidly. The kinetic constants, Ka and Kb, derived from AI-ferron reaction. The kinetic constants followed very well the defined tendencies for coagulation condition. For pure water, when the rapid mixing time increased, the kinetic constants, Ka and Kb showed lower values. Also, for raw water, when the rapid mixing time increased, the kinetic constants, Ka and Kb showed lower values. At A/D(Adsorption and Destabilization) and sweep condition, both $Al(OH)_{3(S)}$ and dissolved Al(III) (monomer and polymer) exist, concurrent reactions by both mechanism appear to cause simultaneous precipitation.

응집공정에서 발생하는 알루미늄 가수분해종 분포특성 (Characteristic of Al(III) Hydrolysis Specie Distribution on Coagulation Process)

  • 송유경;정철우;황보봉형;손인식
    • Korean Chemical Engineering Research
    • /
    • 제44권5호
    • /
    • pp.547-554
    • /
    • 2006
  • 응집공정에서 교반조건과 응집제 주입농도에 따른 알루미늄 가수분해종 변화에 대한 실험결과 다음과 같은 결론을 얻을 수가 있었다. 알루미늄 표준용액을 이용하여 모노머성 알루미늄과 페론 반응을 살펴본 결과 반응초기에 급격한 반응률을 보이며 반응시간 3분 정도에 평형에 도달함을 알 수 있었다. 순수의 경우 교반시간에 따른 영향은 거의 나타나지 않고 있으며 거의 일정한 반응률을 보이고 있었다. 상수원수의 경우 입자상 물질과 유기물의 존재함에 따라 응집제 주입시 수중에서 형성되는 알루미늄 가수분해종이 입자상 물질 및 유기물과 우선적으로 반응하기 때문에 형성되는 알루미늄 가수분해 종에 대한 반응률이 교반시간에 따라 다르게 나타났다. 응집제 주입량이 증가할수록 페론과 반응율이 빠르게 일어나나 일정한 시간이 경과한 후에 반응율을 살펴보면 응집제 주입량이 증가할수록 반응이 느리게 나타났다. 순수의 경우 교반시간에 따른 Ka 값은 교반시간이 증가할수록 Ka 값은 감소함을 알 수 있으며 응집제 주입량의 영향은 크게 나타나지 않고 있다. 그러나 Kb의 경우 응집제 주입량이 증가할수록 반응속도 상수값이 낮아지는 경향을 보이고 있으며, 마찬가지로 교반시간이 증가할수록 Kb 값은 감소함을 알 수 있다. 상수원수를 사용한 경우 순수와 마찬가지로 교반시간에 따른 Ka, Kb값 은 교반시간이 증가할수록 감소하였다. 그러나 응집제 주입량이 증가할수록 Ka 값은 감소하였다.

급속흔화조건에서 AI(III) 가수분해종의 분포특성 (Characteristic of Al(III) Hydrosis Species at Rapid Mixing Condition)

  • 정철우;손정기;손인식;강임석
    • 상하수도학회지
    • /
    • 제18권2호
    • /
    • pp.128-136
    • /
    • 2004
  • The overall objective of this research was to find out the role of rapid mixing conditions in the species of hydrolyzed Al(III) formed by different Al(III) coagulants. When an Al(III) salt is added to water, monomers, polymers, or solid precipitates may form. Different Al(III) coagulants (alum and PACl) show to have different Al species distribution over a rapid mixing condition. During the rapid mixing period, for alum, formation of dissolved Al(III) (monomer and polymer) increases, but for PACl, precipitates of $Al(OH)_{3(s)}$. increases rapidly. Also, for alum, higher mixing speed favoured Al(III) polymers formation over precipitates of $Al(OH)_{3(s)}$ but for PACl, higher mixing speed formed more precipitates of $Al(OH)_{3(s)}$. At A/D and sweep condition, both $Al(OH)_{3(s)}$ and dissolved Al(III) (monomer and polymer) exist, concurrent reactions by both mechanism appear to cause simultaneous precipitation.

급속교반조건에서 Alum 응집제의 가수분해종 분포특성과 유기물특성변화 (Characterization of Natural Organic matter by Rapid Mixing Condition)

  • 송유경;정철우;손희종;손인식
    • 상하수도학회지
    • /
    • 제20권4호
    • /
    • pp.559-571
    • /
    • 2006
  • The overall objective of this research was to find out the interrelation of coagulant and organic matter during rapid mixing process and to identify the change of organic matter by mixing condition and to evaluate the effect of coagulation pH. During the coagulation, substantial changes in dissolved organics must be occurred by coagulation due to the simultaneous formation of microflocs and NOM precipitates. Increase in the organic removal efficiency should be mainly caused by the removal of microflocs formed during coagulant injection. That is, during the mixing period, substantial amount of dissolved organics were transformed into microflocs due to the simultaneous formation of microflocs and NOM precipitates. The results also showed that 40 to 80% of dissolved organic matter was converted into particulate material after rapid mixing process of coagulation. During the rapid mixing period, for purewater, formation of dissolved Al(III) (monomer and polymer) constant by rapid mixing condition, but for raw water, the species of Al hydrolysis showed different result. During the rapid mixing period, for high coagulant dose, Al-ferron reaction increases rapidly. At A/D(Adsorption and Destabilization) and sweep condition, both $Al(OH)_3(s)$ and dissolved Al(III) (monomer and polymer) exist, concurrent reactions by both mechanism appear to cause simultaneous precipitation.

Hyaluronidase Inhibitory and Antioxidant Activities of Enzymatic Hydrolysate from Jeju Island Red Sea Cucumber (Stichopus japonicus) for Novel Anti-aging Cosmeceuticals

  • Ding, Yuling;Jiratchayamaethasakul, Chanipa;Kim, Eun-A;Kim, Junseong;Heo, Soo-Jin;Lee, Seung-Hong
    • 한국해양바이오학회지
    • /
    • 제10권2호
    • /
    • pp.62-72
    • /
    • 2018
  • An active ingredient with hyaluronidase (HAse) inhibitory effect is one of the anti-aging approaches in cosmeceuticals. Here, red sea cucumbers (RSCs), Stichopus japonicus, from Jeju Island were evaluated to examine their HAse inhibitory and antioxidant activity effect. In this study, RSCs were extracted by six enzymatic hydrolysis (Alcalase; Al, Trypsin; Try, Neutrase; Neu, Pepsin; Pep, Alpha-chymotrypsin; Chy and Protamex; Pro). Alcalase hydrolysate (AlH) showed the highest antioxidant capacities for both of oxygen radical absorbance capacity (ORAC) and trolox equivalent antioxidant capacity (TEAC) methods, compared to those of other hydrolysates, at $66.59{\pm}0.78{\mu}M\;TE/mg$ and $135.78{\pm}3.24{\mu}M\;TE/mg$, respectively. Furthermore, AlH performed the highest capacity of HAse inhibitory with $IC_{50}$ value of 3.21 mg/ml. Thus, RSCs hydrolyzed by Al were chosen to determine the cellular antioxidant activity and hyaluronic acid (HA) production effect on Human immortalized keratinocyte cell line (HaCaT). The results showed that AlH improved the cell viabilities and intracellular reactive oxygen species (ROS) induced by 2,2'-Azobis(2-amidinopropane) dihydrochloride (AAPH) were significantly decreased. In addition, AlH increased HA amount by regulating HYAL2 and HAS2 expressions in the HaCaT cells. Taken together, AlH of RSCs collected from Jeju Island showed HAse inhibitory and antioxidant activities against skin-aging which shows its potentials can be an optional natural bioactive ingredient for novel cosmeceuticals.

경옥고(瓊玉膏)의 성분 분석 및 추출물별 항산화(抗酸化) 효능 비교 (An Analysis of the Gyungokgo's Ingredients and a Comparison Study on Anti-oxidation Effects According to the Kinds of Extract)

  • 이소연;신유정;박종혁;김승모;박치상
    • 대한본초학회지
    • /
    • 제23권2호
    • /
    • pp.123-136
    • /
    • 2008
  • Objectives : To estimate the value of the Gyungokgo as therapeutic agent preventing against aging with an analysis of the ingredients and the bio-activating effects by enzymologic methods. Methods : A quantitative analysis of general ingredients' of the Gyungokgo's extract was done first. The effects on electronic donating ability, SOD-like activity, nitric oxide inhibition, xanthine oxidase inhibition, whitening effect have been investigated in the physiological activity measurement of function experiment. Results : The contained hydrolyzed amino acid is Valine, Aspartic acid, Arginine, Isoleucine and the contained free amino acid is Arginine, Phenylalanine, Valine, Glycine. The derivative of free amino acid is Phosphoserine, Carnocine, ${\gammer}$-Aminoisobutyric acid. And the Gyungokgo contains 14 species of minerals, K>Na>Ca>Mg>Fe>Al>Mn. Then, to assure of the Gyungokgo's anti-oxidation, these following subjects -polyphenol, electronic donating ability, SOD-like activity, nitric oxide inhibition, xanthine oxidase inhibition, tyrosinase inhibation- are analyzed and show high activity especially the most in chloroform extracts, (every ingredients written by the order of high amount) Conclusions : The Gyungokgo contains many materials functioning as anti-oxidation, neurotransmitter, anti-fatigue and immune agent.

  • PDF

아세톤에 의한 목재 조성분의 분리 (Separation of Wood Components by Acetone)

  • 송병희;안병준;백기현
    • Journal of the Korean Wood Science and Technology
    • /
    • 제38권3호
    • /
    • pp.230-241
    • /
    • 2010
  • 본 연구는 산염이 첨가된 아세톤 용액으로 목질바이오매스를 가수분해하여 효과적으로 화학적 조성분을 분리할 수 있는 최적조건을 확립하는데 있다. 아세톤에 의한 목질바이오매스의 가수분해에서 $Al_2(SO_4)_3$은 우수한 촉매로 작용하였으며, 최적 농도는 0.01 M (6.3 wt%)였다. 본 실험에서는 아세톤과 물의 비율을 9 : 1로 맞추고 $Al_2(SO_4)_3$의 최적 농도조건에서 신갈나무재와 소나무재를 $200^{\circ}C$에서 45분 동안 가수분해하여 각각 92.7%와 92.4% 분해율을 나타냈다. 아세톤과 물의 비율이 8 : 2에서는 반응시간을 60분으로 연장하였을 경우 신갈나무재의 가수분해율은 92.7%였으나, 소나무재는 반응온도를 $210^{\circ}C$로 상승시켜야 신갈나무재에 버금가는 가수분해율을 얻을 수 있었다. 가수분해 온도와 시간을 증가시키면 가수분해산물로부터 분리, 회수되는 리그닌은 증가하였으나, 탄수화물 함량은 급격히 감소하는 경향을 보였다. 리그닌과 당의 회수량을 고려해 보면, 목질바이오매스의 최적 가수분해 조건은 아세톤과 물의 비율 8 : 2, 아세톤 용액에 대한 $Al_2(SO_4)_3$ 농도는 6.3 wt%, 가수분해 온도와 시간은 각각 $190^{\circ}C$와 60분으로 나타났고, 이 조건에서 당의 회수율은 목질바이오매스 전건중량 기준으로 신갈 나무재와 소나무재에서 각각 47.6%와 51.4%로 나타났고, 리그닌 회수율은 각각 18.2%와 13.7%로 측정되었다.