• Title/Summary/Keyword: Hydrolysis degree

Search Result 280, Processing Time 0.03 seconds

Physicochemical Properties of Depolymerized Barley β-Glucan by Alkali Hydrolysis (알칼리 가수분해에 따른 보리 β-Glucan의 이화학적 특성)

  • Lee, Sang-Hoon;Jang, Gwi-Yeong;Kim, Kee-Jong;Lee, Mi-Ja;Kim, Tae-Jip;Lee, Jun-Soo;Jeong, Heon-Sang
    • The Korean Journal of Food And Nutrition
    • /
    • v.26 no.3
    • /
    • pp.601-607
    • /
    • 2013
  • This study was performed to investigate the changes of total and soluble ${\beta}$-glucan contents, purity and physicochemical characteristics of alkali hydrolyzed barley varieties: Saessalbori (SSB), Saechalssalbori (SCSB) and Hinchalssalbori (HCSB). The barleys were hydrolyzed at different concentrations of sodium hydroxide (0.2~1.0 N) for 12 hours. Total ${\beta}$-glucan contents of raw SSB, SCSB and HCSB were 8.40, 7.77 and 8.28%, and soluble ${\beta}$-glucan contents were 4.80, 4.16 and 4.61%, respectively. The total ${\beta}$-glucan contents after alkali hydrolyzed at 1.0 N NaOH were 7.54, 6.89 and 7.54%, also soluble ${\beta}$-glucan contents were 4.82, 4.30 and 4.55%, respectively. The degree of purity of soluble ${\beta}$-glucan in SSB, SCSB, and HCSB were 35.79, 30.91 and 33.90%, respectively. They were increased to 74.02, 75.28 and 81.41% after hydrolyzed at 1.0 N NaOH, respectively. The molecular weight and viscosity of soluble ${\beta}$-glucan solutions were decreased as sodium hydroxide concentration was increased. The re-solubility of raw barley ${\beta}$-glucan was about 50%; however, it was increased to approximately 87% as sodium hydroxide concentration was increased.

Synthesis of Hyper Crosslinked Polymer Particle Having Hydroxyl Group (하이드록시기를 갖는 Hyper Crosslinked 고분자 입자의 합성)

  • Jeon, Hyo-Jin;Kim, Dong-Ok;Park, Jea-Sung;Kim, Jong-Sik;Kim, Dong-Wook;Jung, Mi-Sun;Shin, Seong-Whan;Lee, Sang-Wook
    • Polymer(Korea)
    • /
    • v.35 no.1
    • /
    • pp.66-71
    • /
    • 2011
  • With the synthesis of hyper crosslinked polymer particle (HCPP), having microporous structure with hydroxyl functional group, synthesized via polymerization reaction consists of three stepssuspension polymerization, hyper crosslinking by Friedel-Craft catalysis and hydrolysis reaction, the effects of the ratio of each monomer, hyper crosslinking conditions and $CO_2$ supercritical drying on the variations of surface morphology, pore size & distribution and BET surface area of HCPP have been investigated. It was observed that the formation of surface crack or fracture of HCPP was intimately related with the degree of hyper crosslinking reaction between microphase separated domains. And the value of BET surface area of HCPP increased with the increase of reaction temperature, time and the amounts of solvent used in hyper crosslinking step. Moreover, $CO_2$ supercritical drying was proven to be a very effective method for removing stabilizer, unreacted monomers and oligomers from HCPP but needed to add methanol as a co-solvent for efficient removing of residual catalyst.

Improvement of Rheological and Functional Properties of Salmon FPC by Enzymatic Partial Hydrolysis 1. Production of Salmon FPC Hydrolysates and Their General Properties (효소적 부분 가수분해에 의한 연어 FPC(Fish Protein Concentrates)의 물성 및 기능성 개선 1. 연어 FPC의 가수분해물 제조와 일반적인 성상)

  • LEE Jong-Ho;LEE Keun-Tai;PARK Seong-Min;PARK Chan-kyu
    • Korean Journal of Fisheries and Aquatic Sciences
    • /
    • v.31 no.1
    • /
    • pp.132-138
    • /
    • 1998
  • To improve functional properties and enhance application of FPC in food industry, modified salmon FPC with enzyme treatment was produced and its general properties were investigated. Salmon FPC has over $84\%$ of protein and less than $0.18\%$ of lipid. Solubilities of FPC extracted with IPA and ethanol were very poor as less than $3\%$ in every pH range. In case of enzyme : substrate ratio of 1 : 100, degree of hydrolysis significantly increased until 4 hours and then slightly increased. No considerable differences were observed in general components of hydrolysates. Results of SDS-PAGE showed one unique band in each case and their molecular weight was less than 6,500. The flow properties of hydrolysates showed newtonian flow. Whiteness of hydrolysates were higher than that of salmon FPC as $5\~7$. There was no significant differences in the amount of peptide, but that of free amino acid slightly increased from 0.17 to 0.21 mg/ml.

  • PDF

The Quality Characteristics of Soy Cutlets Using Textured Soy Protein Treated with Different Enzymes (효소처리를 달리한 조직대두단백을 이용하여 제조한 콩까스의 품질특성)

  • Kim, Eun-Bi;Kim, Eun-Joo;Lee, Han-Na;Lee, Min-Kyoung;Oh, Jong-Shin;Kim, Sun-Ok;Lee, Sook-Young
    • Journal of the Korean Society of Food Culture
    • /
    • v.23 no.4
    • /
    • pp.507-513
    • /
    • 2008
  • The development of soy cutlets containing textured soy protein (TSP) as a meat analog was studied. In order to decrease the beany flavor and to increase the texture, TSP was treated with 0.3% Flavourzyme or 0.1% Protamex for 10 or 20 min, respectively. The degree of hydrolysis for TSP treated with Protamex was higher than that treated with Flavourzyme. Hydrolysis was observed to increase as the reaction time was increased for both Flavourzyme and Protamex. The water holding capacity of TSP treated with Protamex for 10 min was the highest, and that treated with Flavourzyme for 20 min was similar to that of Protamex treatment for 20 min. The oil binding capacity of TSP treated with Protamex for 20 min was the highest. The hardness of the soy cutlets using TSP treated with Flavourzyme for 10 min was higher than that treated for 20 min, while that of Protamex treated for 20 min was higher than that treated for 10 min. The cohesiveness of the soy cutlets using TSP treated with Flavourzyme or Protamex for 10 min was higher than those treated for 20 min. The chewiness of the soy cutlets treated with Flavourzyme for 10 min was higher than for those treated for 20 min, while those treated with Protamex for 20 min was higher than those treated for 10 min. The springiness of TSP treated with Flavourzyme for 20 min was higher than those treated for 10 min, and higher than those treated with Protamex for 10 or 20 min. For sensory evaluation, the beany flavor of the soy cutlets treated with Protamex for 20 min was the weakest. The flavor and chewiness of both a pork cutlet and a soy cutlet treated with Protamex for 20 min were the best. In the overall quality, soy cutlets treated with Protamex for 20 min was the most desirable. In conclusion, soy cutlets treated with 0.1% Protamex for 20 min could be a reasonable substitute of pork cutlets.

Enzymatic preparation and antioxidant activities of protein hydrolysates derived from tuna byproducts (참치 가공부산물로부터 단백가수분해물 제조 및 항산화 활성 평가)

  • Gyu-Hyeon Park;Jeong-Min Lee;Na-Young Lim;Syng-Ook Lee
    • Food Science and Preservation
    • /
    • v.30 no.5
    • /
    • pp.885-895
    • /
    • 2023
  • This study aims to investigate the production and characteristics of protein hydrolysates derived from tuna byproducts (TP) using various proteolytic enzymes and to compare the antioxidant activity of the resulting hydrolysates. The TP were subjected to enzymatic hydrolysis using five different proteases: alcalase, bromelain, flavourzyme, neutrase, and papain, and the antioxidant activities of the hydrolysates were evaluated. Subsequent analysis of the available amino group contents and sodium dodecyl sulfate-polyacrylamide gel electrophoresis patterns indicated a high degree of hydrolysis in TP after treatment with all the enzymes, except for papain. Based on the RC50 values obtained from four different antioxidant analyses, all the hydrolysates exhibited similar antioxidant activity, except for the flavourzyme hydrolysate, which showed significantly higher scavenging activity against ABTS radicals and hydrogen peroxide than the other hydrolysates. These findings suggest that protein hydrolysates derived from TP hold promise as potential sources of natural antioxidants.

Effect of Sodium Caseinate Hydrolysates on Angiotensin-I Converting Enzyme Inhibition Activity (Sodium Caseinate 가수분해물의 Angiotensin-I Converting Enzyme 저해효과에 관한 연구)

  • Lee, Keon-Bong;Shin, Yong-Kook;Baick, Seung-Chun
    • Food Science of Animal Resources
    • /
    • v.32 no.5
    • /
    • pp.652-658
    • /
    • 2012
  • This study was carried out to identify the ACE (Angiotensin converting enzyme) inhibitory activity of casein hydrolysates for development of anti-hypertensive hydrolysates. Sodium caseinate was treated with six kinds of commercial proteases such as Flavourzyme, Protamex, Neutrase 1.5, Alcalase, Protease M, and Protease S for 8 h individually, and was then treated with the enzyme combination for 4 h at $45^{\circ}C$. The hydrolysate which had the highest ACE inhibitory effect was then hydrolysed successively with three digestive enzymes: pepsin, trypsin, and ${\alpha}$-chymotrypsin, at $37^{\circ}C$ for 4 h under conditions mimicking those of the gastrointestinal tract. UF (ultra filtration) treatment was applied to one of the secondary hydrolysates to determine ACE inhibitory activity. When sodium caseinate was hydrolysed by commercial proteases, the degree of hydrolysis (DH) showed 2.54 to 4.25% and after secondary hydrolysis, DH showed 4.30 to 5.22%. ACE inhibitory activity and $IC_{50}$ values decreased, and inhibition rates increased during hydrolysis. Protamex treatment showed the lowest $IC_{50}$ value ($516{\mu}g/mL$) and Flavourzyme hydrolysate showed the highest $IC_{50}$value ($866{\mu}g/mL$). As the first hydrolysate was treated with Flavourzyme, the ACE inhibitory activity increased. Neutrase hydrolysate had the highest activity with an $IC_{50}$ value ($282{\mu}g/mL$). When Neutrase plus Flavourzyme treatment was hydrolyzed by digestive enzymes, the $IC_{50}$ value ($597{\mu}g/mL$) was decreased statistically (p<0.05). As Neutrase plus Flavourzyme hydrolysate is treated by UF with MW cut-off 10,000, permeate showed $273{\mu}g/mL$ of $IC_{50}$ value, showed no difference, but retentate which has over MW 10,000 showed statistically different $IC_{50}$ value, $635{\mu}g/mL$ (p<0.05).

Antigenicity of Whey Protein Hydrolysates against Rabbit Anti ${\beta}-Lactoglobulin$ Antiserum (토끼 항 ${\beta}-Lactoglobulin$ 항혈청에 대한 유청단백질 가수분해물의 항원성)

  • Lee, Soo-Won;Ha, Woel-Kyu;Juhn, Suk-Lak;Kim, Jung-Wan;Shon, Dong-Hwa;Lee, Jae-Young
    • Korean Journal of Food Science and Technology
    • /
    • v.26 no.5
    • /
    • pp.532-538
    • /
    • 1994
  • In order to investigate the lowering effects of in vitro enzymatic hydrolysis by the treatment of chymotrypsin, trypsin, pancreatin, or protease from Aspergillus oryzae on the antigenicity of whey protein(WPI) against rabbit anti ${\beta}-LG$ antiserum, competitive inhibition ELISA(cELISA) and passive cutaneous anaphylaxis(PCA) test using guinea pig were performed. The results of cELISA showed that the monovalent antigenicity of the whey protein hydrolysates(WPH) to the antiserum was decreased to $10^{-1.7}{\sim}10^{-4.1}$ and less by the hydrolysis. Especially, the antigenicity of OUP(hydrolysate by protease from Asp. oryzae with preteatment of pepsin) was found almost to be removed. By the heterologous PCA the polyvalent antigenicity of the WPH was decreased to $1/2{\sim}1/128$ and less. Especially, the polyvalent antigenicity of OUN(hydrolysate by protease from Asp. oryzae without preteatments) was found almost to be removed, although OUN did not have so high degree of hydrolysis(DH) or so low monovalent antigenicity (reduced to $10^{-3.2}$). Therefore, this result was assumed to come from effective destruction of antigenic determinants on ${\beta}-LG$ in WPI, not to produce polyvalent antigenic peptides that are closely associated with induction of allergy. This finding suggested that WPH prepared by the treatment of microorganic protease from Asp. oryzae would be a material for hypoallergenic infant formula due to the removal of the polyvalent antigenicity of ${\beta}-LG$, the major milk allergen in WPI.

  • PDF

Photo-catalytic Activity of CNT-TiO2 Nano Complex Prepared from Titanium Oxysulfate and Carbon Nanotube by Hydrosis (황산티타늄과 탄소나노튜브로부터 가수분해로 제조된 CNT-TiO2 나노복합체의 광촉매활성)

  • Kim, Sang Jin;Jung, Min-Jung;Lee, Young-Seak
    • Applied Chemistry for Engineering
    • /
    • v.21 no.1
    • /
    • pp.58-62
    • /
    • 2010
  • CNT-$TiO_{2}$ nano complexes were prepared from $TiOSO_4$ and multi-walled carbon nanotube (MWCNT) by hydrolysis. The CNTs were dispersed uniformly with anatase $TiO_{2}$ in the prepared $TiO_{2}$-CNT complexes. The increasing MWCNT ratio leads to increased crystalline carbon and O/Ti ratio. The decomposition degree of methylene blue was experienced according to UV radiation time for study adsorption and photocatalytic activity. The samples having high MWCNT ratio show high adsorption and photodegradation. The high specific surface area, functional group having oxygen, low band gap energy, high electric conductivity, high volume to surface ratio, uniform structure and properties of MWCNT assist photocatalytic activity of CNT-$TiO_{2}$ complex.

Biosynthesis of Conjugated Linoleic Acid and Its Incorporation into Ruminant's Products

  • Song, Man K.;Kennelly, John J.
    • Asian-Australasian Journal of Animal Sciences
    • /
    • v.16 no.2
    • /
    • pp.306-314
    • /
    • 2003
  • Bio-hydrogenation of $C_{18}$-unsaturated fatty acids released from the hydrolysis of dietary lipids in the rumen, in general, occurs rapidly but the range of hydrogenation is quite large, depending on the degree of unsaturation of fatty acids, the configuration of unsaturated fatty acids, microbial type and the experimental condition. Conjugated linoleic acid (CLA) is incompletely hydrogenated products by rumen microorganisms in ruminant animals. It has been shown to have numerous potential benefits for human health and the richest dietary sources of CLA are bovine milk and milk products. The cis-9, trans-11 is the predominant CLA isomer in bovine products and other isomers can be formed with double bonds in positions 8/10, 10/12, or 11/13. The term CLA refers to this whole group of 18 carbon conjugated fatty acids. Alpha-linolenic acid goes through a similar bio-hydrogenation process producing trans-11 $C_{18:1}$ and $C_{18:0}$, but may not appear to produce CLA as an intermediate. Although the CLA has been mostly derived from the dietary $C_{18:2}$ alternative pathway may be existed due to the extreme microbial diversity in the reticulo-rumen. Regardless of the origin of CLA, manipulation of the bio-hydrogenation process remains the key to increasing CLA in milk and beef by dietary means, by increasing rumen production of CLA. Although the effect of oil supplementation on changes in fatty acid composition in milk seems to be clear its effect on beef is still controversial. Thus further studies are required to enrich the CLA in beef under various dietary and feeding conditions.

Effect of Nanocellulose on the Mechanical and Self-shrinkage Properties of Cement Composites (나노셀룰로오스가 시멘트복합체의 역학적 특성 및 자기수축 특성에 미치는 영향)

  • Kim, Sun-Woo;Yoon, Byung-Tae
    • Applied Chemistry for Engineering
    • /
    • v.27 no.4
    • /
    • pp.380-385
    • /
    • 2016
  • Nanocelluloses, mainly cellulose nanofibrils (CNF) and cellulose nanocrystals (CNC, i.e., defect-free, rod-like crystalline residues after acid hydrolysis of fibers), have been the subject of recent interest. Due to the presence of hydroxyl groups on the surface of nanocelluloses, their surfaces are reactive, making them suitable candidates for reinforcing materials for manufacturing polymer composites. In this study, CNF was used as a reinforcing material for manufacturing cement composites. CNF was prepared by TEMPO (2,2,6,6,-tetramethyl piperidine-1-oxyl radical) oxidation procedure combined with extensive homogenization and ultrasonication. Transmission electron microscopy (TEM) analysis of the suspension showed the width of CNF between 10 and 15 nm. The compressive strength of cement composites containing 0.5% CNF was comparable to that of conventional cement composites. On the other hand, the tensile and flexural strength were improved by 49.7% and 38.8%, respectively, compared to those of conventional cement composites. Also, at an ambient condition, the degree of self-shrinkage reduction reached to 18.9% in one day, followed by 5.9% in 28 days after molding.