• 제목/요약/키워드: Hydrolysis Process

검색결과 549건 처리시간 0.028초

FHD법으로 형성된 실리카 유리미립자의 특성에 관한 연구 (A Study on the Characteristics of Silica Fine Glass Particles prepared by Flame Hydrolysis Deposition Process)

  • 최준기;정명영;최태구
    • 한국재료학회지
    • /
    • 제7권10호
    • /
    • pp.845-850
    • /
    • 1997
  • 수직형 FHD증착법을 사용하여 SiO$_{2}$, SiO$_{2}$-P$_{2}$O$_{5}$, SiO$_{2}$P$_{2}$O$_{5}$-B$_{2}$O$_{3}$-GeO$_{2}$계 실리카 유리미립자를 형성하였으며, SEM, ICP-AES, XRD, TGA-DSC을 사용하여 그 특성을 분석하였다. XRD측정을 통해, 미립자 형성시 사용된 화염온도(130$0^{\circ}C$-150$0^{\circ}C$)와 기판온도(-20$0^{\circ}C$)가 SiO$_{2}$-P$_{2}$O$_{5}$계 미립자를 비정질상태로 형성하였으며, SiO$_{2}$P$_{2}$O$_{5}$-B$_{2}$O$_{3}$와 SiO$_{2}$P$_{2}$O$_{5}$-B$_{2}$O$_{3}$-GeO$_{2}$계 미립자에서는 B$_{2}$O$_{3}$, BPO$_{4}$, GeO$_{2}$의 결정성피크들을 관찰하였다. TGA-DSC 열분석을 통해, SiO$_{2}$와 SiO$_{2}$-P$_{2}$O$_{5}$는 온도변화에 따른 질량변화가 없었으며, SiO$_{2}$P$_{2}$O$_{5}$-B$_{2}$O$_{3}$-GeO$_{2}$계의 경우 질량감소를 동반한 유리전이에 따른 분자이완현상 및 결정화나 회복반응을 나타내고 있다. 질량감소는 미립자가 결정상태일때 가속되는 경향을 나타냈으며, DSC열분석을 통해 SiO$_{2}$, SiO$_{2}$-P$_{2}$O$_{5}$, SiO$_{2}$P$_{2}$O$_{5}$-B$_{2}$O$_{3}$-GeO$_{2}$계 유리미립자들의 고밀화가 시작되는 온도를 각각 1224$^{\circ}C$, 1151$^{\circ}C$, 953$^{\circ}C$, 113$0^{\circ}C$에서 관찰하였다.

  • PDF

밤 용액의 젖산발효 (Lactic Acid Fermentation of Chestnut Broth)

  • 진효상
    • 한국미생물·생명공학회지
    • /
    • 제29권3호
    • /
    • pp.162-168
    • /
    • 2001
  • 분변과 요구르트에서 10주의 젖산균을 분리하여 이중 6주는 Bifidobactria로 4주는 Lactobacilli로 동정하였다. 이들은 이용하여 8% 증숙밤용액을 발효시켰을 때 발효액의 산도는 요구르트보다는 낮았으나 두유를 비롯한 식물성 요구르트보다는 2배이상 높았다. 산도를 증가시키기 위해 Yeast extract 와 tryptone peptone를 첨가할 때 0.2%와 0.4%의농도에서 가장 높았다. 포도당을 0.5-0.8% 범위의 첨가하였을 때 lactobacilli에 의한 발효액에서는 산생성이 촉진되었으나. bifidobacteria 에서는 그렇지 않았다. 시험된 과일과 채소즙 중에서는 당근즙의 첨가가 가장 큰 촉진 효과를 나타내었다. 25% 밤용액에서는 고지추출액에 의한 가수분해는 젖산생성을 크게 촉진하였으나 가수분해하지 않은 8% 밤용액에서는 젖산생성량과 비교하였을 때 산생성 순증가량은 그다지 크지 않았다.

  • PDF

졸-겔 방법으로 제조된 Er doped $Al_2O_3/SiO_2$ 필름의 다공성과 결정성에 대한 광 발광 특성 (The dependence of porosity and crystallity on photoluminescence properties of Er doped $Al_2O_3/SiO_2$ films prepared by sol-gel method)

  • 권정오;김재홍;석상일;정동운
    • 한국재료학회:학술대회논문집
    • /
    • 한국재료학회 2003년도 추계학술발표강연 및 논문개요집
    • /
    • pp.137-137
    • /
    • 2003
  • Optical amplificator have been used to compensate the losses in the optical signal transmission and processing. Today, there has been increasing demand for the very low cost optical amplifier. Sol-gel offers considerable potential both low cost manufacture, and for great flexibility in materials composition and structure. In addition, the sol-gel process is a very attractive method for producing porous materials with controlled structure. In this work, we present the potoluminescence properties of Er doped A1$_2$O$_3$/SiO$_2$ films. Erbium doped alumina nano sol was prepared by Al(NO$_3$)$_3$.9$H_2O$ and Er(NO$_3$)$_3$.5$H_2O$ through hydrolysis and peptization, and then GPS (3-Glycidoxypropyltrimethoxysilane) was added into Er doped alumina nano sol for organic- inorganic hybridization. Er doped A1$_2$O$_3$/SiO$_2$ film was obtained by spin coating, dip coating and thermal treatment from 30$0^{\circ}C$~120$0^{\circ}C$, and there were crack-free after thermal treatment. The thickness of film was measured SEM, and the porosity of film was characterized by BET and TGA. The crystal phase of Er doped A1$_2$O$_3$/SiO$_2$ were determined by XRD. Finally, the photoluminescence properties of Er doped A1$_2$O$_3$/SiO$_2$ films will be discuss with the consideration of porosity and crystallity.

  • PDF

Enzymes involved in folate metabolism and its implication for cancer treatment

  • Kim, Sung-Eun
    • Nutrition Research and Practice
    • /
    • 제14권2호
    • /
    • pp.95-101
    • /
    • 2020
  • BACKGROUND/OBJECTIVES: Folate plays a critical role in DNA synthesis and methylation. Intracellular folate homeostasis is maintained by the enzymes folylpolyglutamate synthase (FPGS) and γ-glutamyl hydrolase (GGH). FPGS adds glutamate residues to folate upon its entry into the cell through a process known as polyglutamylation to enhance folate retention in the cell and to maintain a steady supply of utilizable folate derivatives for folate-dependent enzyme reactions. Thereafter, GGH catalyzes the hydrolysis of polyglutamylated folate into monoglutamylated folate, which can subsequently be exported from the cell. The objective of this review is to summarize the scientific evidence available on the effects of intracellular folate homeostasis-associated enzymes on cancer chemotherapy. METHODS: This review discusses the effects of FPGS and GGH on chemosensitivity to cancer chemotherapeutic agents such as antifolates, such as methotrexate, and 5-fluorouracil. RESULTS AND DISCUSSION: Polyglutamylated (anti)folates are better substrates for intracellular folate-dependent enzymes and retained for longer within cells. In addition to polyglutamylation of (anti)folates, FPGS and GGH modulate intracellular folate concentrations, which are an important determinant of chemosensitivity of cancer cells toward chemotherapeutic agents. Therefore, FPGS and GGH affect chemosensitivity to antifolates and 5-fluorouracil by altering intracellular retention status of antifolates and folate cofactors such as 5,10-methylenetetrahydrofolate, subsequently influencing the cytotoxic effects of 5-fluorouracil, respectively. Generally, high FPGS and/or low GGH activity is associated with increased chemosensitivity of cancer cells to methotrexate and 5-fluorouracil, while low FPGS and/or high GGH activity seems to correspond to resistance to these drugs. Further preclinical and clinical studies elucidating the pharmocogenetic ramifications of these enzyme-induced changes are warranted to provide a framework for developing rational, effective, safe, and customized chemotherapeutic practices.

미생물 Chitin Deacetylase의 특성과 응용 (Enzymatic Characteristics and Applications of Microbial Chitin Deacetylases)

  • 국주희;정우진;김길용;박노동
    • 한국미생물·생명공학회지
    • /
    • 제33권1호
    • /
    • pp.9-15
    • /
    • 2005
  • Chitin deacetylase(CDA; EC 3.5.1.41)는 키틴의 N-acetamide bonds를 가수분해하여 이를 키토산으로 전환시키는 효소다. 한편, 키토산은 의약, 화장품, 식품, 농업 등의 분야에서 다양하게 응용되는 고분자 다당류이다. 본 논문에서는 미생물 유래 CDA의 분포, 분석법, 효소적 특성, 기질 특이성, 작용기작, 유전자의 구조, 생물학적 역할, 응용 등의 최신 지견을 기술하고자 하였다. 미생물 CDA가 세포벽 형성과 식물-미생물 상호작용에 관여한다는 연구결과들을 제시하였으며, CDA의 유전자 구조를 다양한 acetylated poly/oligo-saccharides를 탈아세틸화하는 family 4 carbohydrate esterase의 유전자 구조와 비교하였다. 키틴의 탈아세틸화로 키토산을 제조하는 과정에 CDA의 활용 가능성과, CDA를 포함한 고활성의 키틴 대사효소들을 분비하는 곤충 병원균의 활용 가능성도 살펴보았다.

무전해 도금법을 이용한 전자소재용 은-구리 복합분말의 제조 (Synthesis of Ag-Cu Composite Powders for Electronic Materials by Electroless Plating Method)

  • 윤치호;안종관;김동진;손정수;박제신;안양규
    • 한국분말재료학회지
    • /
    • 제15권3호
    • /
    • pp.221-226
    • /
    • 2008
  • Silver coated copper composite powders were prepared by electroless plating method by controlling the activation and deposition process variables such as feeding rate of silver ions solution, concentration of reductant and molar ratio of activation solution $(NH_4OH/(NH_4)_2SO_4)$ at room temperature. The characteristics of the product were verified by using a scanning electron microscopy (SEM), X-ray diffraction (XRD) and atomic absorption (A.A.). It is noted that completely cleansing the copper oxide layers and protecting the copper particles surface from hydrolysis were important to obtain high quality Ag-Cu composite powders. The optimum conditions of Ag-Cu composite powder synthesis were $NH_4OH/(NH_4)_2SO_4$ molar ratio 4, concentration of reductant 15g/l and feeding rate of silver ions solution 2 ml/min.

Kinetic and Energetic Parameters of Carob Wastes Fermentation by Saccharomyces cerevisiae: Crabtree Effect, Ethanol Toxicity, and Invertase Repression

  • Rodrigues, B.;Peinado, J.M.;Raposo, S.;Constantino, A.;Quintas, C.;Lima-Costa, M.E.
    • Journal of Microbiology and Biotechnology
    • /
    • 제25권6호
    • /
    • pp.837-844
    • /
    • 2015
  • Carob waste is a useful raw material for the second-generation ethanol because 50% of its dry weight is sucrose, glucose, and fructose. To optimize the process, we have studied the influence of the initial concentration of sugars on the fermentation performance of Saccharomyces cerevisiae. With initial sugar concentrations (S0 ) of 20 g/l, the yeasts were derepressed and the ethanol produced during the exponential phase was consumed in a diauxic phase. The rate of ethanol consumption decreased with increasing S0 and disappeared at 250 g/l when the Crabtree effect was complete and almost all the sugar consumed was transformed into ethanol with a yield factor of 0.42 g/g. Sucrose hydrolysis was delayed at high S0 because of glucose repression of invertase synthesis, which was triggered at concentrations above 40 g/l. At S0 higher than 250 g/l, even when glucose had been exhausted, sucrose was hydrolyzed very slowly, probably due to an inhibition at this low water activity. Although with lower metabolic rates and longer times of fermentation, 250 g/l is considered the optimal initial concentration because it avoids the diauxic consumption of ethanol and maintains enough invertase activity to consume all the sucrose, and also avoids the inhibitions due to lower water activities at higher S0 .

Sol-Gel법에 의한 $Li_2O-Al_2O_3-TiO_2-SiO_2$계 다공성 결정화 유리의 제조 : (I) Sol-Gel 방법에 의한 $Li_2O-Al_2O_3-TiO_2-SiO_2$계 다공성 겔체의 제조 (Preparation of Glass-Ceramics in $Li_2O-Al_2O_3-TiO_2-SiO_2$ System by Sol-Gel Technique : (I) Preparation of Porous Monolithic Gel in $Li_2O-Al_2O_3-TiO_2-SiO_2$ System by Sol-Gel Method)

  • 조훈성;양중식;권창오;이현호
    • 한국세라믹학회지
    • /
    • 제30권7호
    • /
    • pp.535-542
    • /
    • 1993
  • It was investigated in this study that a preparation method, activation energy, surface area, pore volume, pore size distribution and DTA analysis of the dry gel in process of producing monolithic porous gel in Li2O-Al2O3-TiO2-SiO2 system by the sol-gel technique using metal alkoxides. Activation energy for gellation according to the variation of water concentration and the kind of catalysts ranged from 10 to 20kcal/mole. Monolithic dry gels were prepared after drying at 9$0^{\circ}C$ when the amount of water for gellation was 4~8 times more than the stoichiometric amount, that was necessary for the full hydrolysis of the mixed metal alkoxide. The specific surface area, the pore volume, the average pore radius of the dried gel at 18$0^{\circ}C$ according to the various kinds of catalyst were about 348~734$m^2$/g, 0.35~0.70ml/g and 10~35$\AA$, respectively. It showed that the dry gels were porous body. As a result ofthe analysis of DTA, it was confirmed that the exothermaic peaks at 715$^{\circ}C$ and 77$0^{\circ}C$ was clue to the crystallization of dried gel.

  • PDF

홍조류, 갈조류, 녹조류를 이용한 바이오에탄올 생산 및 폐 해조류 슬러리의 중금속 생물흡착 (Ethanol Production from Red, Brown and Green Seaweeds and Biosorption of Heavy Metals by Waste Seaweed Slurry from Ethanol Production)

  • 선우인영;라채훈;권성진;허지희;김예진;김지우;신지호;안은주;조유경;김성구
    • KSBB Journal
    • /
    • 제29권6호
    • /
    • pp.414-420
    • /
    • 2014
  • The seaweeds with high carbohydrate ratio Gelidium amansii, Saccharina japonica and Enteromorpha intestinalis were used as red, brown, and green seaweeds, respectively. Thermal acid hydrolysis, enzymatic saccharification and fermentation were carried out using those seaweeds to produce ethanol. The ethanol concentrations from red, brown and green seaweed were 14.8 g/L, 11.6 g/L and 9.9 g/L, respectively. After the production of ethanol, the seaweeds were reused to absorb heavy metal. The maximum biosorption ratio was Cu(II) (89.6%), Cr(III) (82.9%), Ni(II) (66.1%). Cu(II) had the highest affinity with 3 waste seaweeds. Red seaweed was verified the most effective substrates to both process.

New Action Pattern of a Maltose-forming α-Amylase from Streptomyces sp. and its Possible Application in Bakery

  • Ammar, Youssef Ben;Matsubara, Takayoshi;Ito, Kazuo;Iizuka, Masaru;Limpaseni, Tipaporn;Pongsawasdi, Piamsook;Minamiura, Noshi
    • BMB Reports
    • /
    • 제35권6호
    • /
    • pp.568-575
    • /
    • 2002
  • An $\alpha$-amylase (EC 3.2.1.1) was purified that catalyses the production of a high level of maltose from starch without the attendant production of glucose. The enzyme was produced extracellularly by thermophilic Streptomyces sp. that was isolated from Thailand's soil. Purification was achieved by alcohol precipiation, DEAE-Cellulose, and Gel filtration chromatographies. The purified enzyme exhibited maximum activity at pH 6-7 and $60^{\circ}C$. It had a relative molecular mass of 45 kDa, as determined by SDS-PAGE. The hydrolysis products from starch had $\alpha$-anomeric forms, as determined by $^1H$-NMR. This maltose-forming $\alpha$-amylase completely hydrolyzed the soluble starch to produce a high level of maltose, representing up to 90%. It hydrolyzed maltotetrose and maltotriose to primarily produce maltose (82% and 62%, repectively) without the attendant production of glucose. The high maltose level as a final end-product from starch and maltooligosaccharides, and the unique action pattern of this enzyme, indicate an unusual maltose-forming system. After the addition of the enzyme in the bread-baking process, the bread's volume increased and kept its softness longer than when the bread had no enzyme.