Browse > Article

Enzymatic Characteristics and Applications of Microbial Chitin Deacetylases  

Kuk Ju-Hee (Glucosamine Saccharide Materials National Research Laboratory, Department of Agricultural Chemistry, Institute of Agricultural Science and Technology, Chonnam National University)
Jung Woo-Jin (Glucosamine Saccharide Materials National Research Laboratory, Department of Agricultural Chemistry, Institute of Agricultural Science and Technology, Chonnam National University)
Kim Kil-Yong (Glucosamine Saccharide Materials National Research Laboratory, Department of Agricultural Chemistry, Institute of Agricultural Science and Technology, Chonnam National University)
Park Ro-Dong (Glucosamine Saccharide Materials National Research Laboratory, Department of Agricultural Chemistry, Institute of Agricultural Science and Technology, Chonnam National University)
Publication Information
Microbiology and Biotechnology Letters / v.33, no.1, 2005 , pp. 9-15 More about this Journal
Abstract
Chitin deacetylase (CDA; EC 3.5.1.41) catalyzes the hydrolysis of N-acetamide bonds of chitin, converting it to chitosan. Chitosan has several applications in areas such as biomedicine, food ingredients, cosmetics, pharmaceuticals, and agriculture. In this paper, occurrence, assay and purification protocols, enzymatic characteristics, substrate specificity, and mode of action of microbial CDAs have been described. Several lines of evidence have substantiated the biological roles involved in cell wall formation and plant-pathogen interactions for fungal CDAs. The gene structure of CDAs has been compared with other family 4 carbohydrate esterases which deacetylate a wide variety of acetylated poly/oligo-saccharides. The use of CDAs for the conversion of chitin to chitosan, in contrast to the presently used chemical procedure, offers the possibility of a controlled, non-degradable process, resulting in the production of well-defined chitosan oligomers and polymers. Insect pathogen that can secrete high levels of chitin-metab­olizing enzymes including CDA can be a possible alternative for new pest management tools.
Keywords
Citations & Related Records

Times Cited By SCOPUS : 3
연도 인용수 순위
1 Araki, Y. and E. Ito. 1975. A pathway of chitosan formation in Mucor rouxii: enzymatic deacetylation of chitin. Eur. J. Biochem. 189: 249-253
2 Blair, D. E. and D. M. F. van Aalten. 2004. Structures of Bacillus subtilis PdaA, a family 4 cabohydrate esterase, and a complex with N-acetyl-glucosamine. FEBS Letters 570: 13-19   DOI   PUBMED   ScienceOn
3 Davis, L. L. and S. Bartnicki-Garcia, 1984. Chitosan synthesis by the tandem action of chitin synthase and chitin deacetylase from Mucor rouxii. Biochemistry 23: 1065-1073   DOI
4 Deising, H. and J. Seigrist. 1995. Chitin deacetylase activity of the rust Uromyces viciae-fabaeis controlled by fungal morphogenesis. FEMS Microbiol. Lett. 127: 207-212   DOI   ScienceOn
5 Freiberg, C, R. Fellay, A. Bairoch, W. J. Broughton, A. Rosental, and X. Perret. 1997. Molecular basis of symbiosis between Rhizobium and legumes. Nature 387: 394-401   DOI   ScienceOn
6 Kafetzopoulos, D., A. Martinou, and V. Bouriotis. 1993. Bioconversion of chitin to chitosan: purification and characterization of chitin deacetylase from Mucor rouxii. Proc. Natl. Acad. Sci. USA 90: 2564-2568
7 Kauss, H. and B. Bauch. 1998. Chitin deacetylase from Colletotrichum lindemuthianum, pp. 518-523, In W. A Woods and S. T Kellogg. (eds.), Methods in Enzymology, vol. 161, Academic Press, San Diago
8 Mendgen, K., M. Hahn, and H. Deising. 1996. Morphogenesis and mechanisms of penetration by plant pathogenic fungi. Annu. Rev. Phytopathol. 34: 367-386   DOI   ScienceOn
9 Nahar, P, Ghormade, V, and V. Deshpande. 2004. The extracellular constitutive production of chitin deacetylase in Metarhrlum anisopliae: possible edge to entomopathogenic fungi in the biological control of insect pests. J. Invertibrate Pathol 85: 80-88   DOI   ScienceOn
10 Tokuyasu, K., H. Ono, K. Hayashi, and Y. Mori. 1999. Reverse hydrolysis reaction of chitin deacetylase and enzymatic synthesis of $\beta -D-GlcNAc-(1\rightarrow 4)-GlcN$ from chitobiose. Carbohydr. Res. 322: 26-31   DOI   PUBMED   ScienceOn
11 Alfonso, C., O.M. Nuero, F. Santamaria, and F. Reyes. 1995. Purification of a heat stable chitin deacetylase from Aspergillus nidulans and its role in cell wall degradation. Curr. Microbiol. 30: 49-54   DOI   ScienceOn
12 McMurrough, I., A. Flores-Carreon, and S. Bartnicki-Garcia. 1971. Pathway of chitin synthesis and cellular localization of chitin synthase in Mucor rouxii. J. Biol. Chem. 246: 3999-4007.
13 Tsigos, I. and V. Bouriotis. 1995. Purification and characterization of chitin deacetylase from Colletotrichum lindemuthianum. J. Biol. Chem. 270: 26286-26291   DOI   ScienceOn
14 Barber, M. S., R. E. Bertram, and J. P. Ride. 1989. Chitin oligosaccharides elicit lignification in wounded wheat leaves. Physiol, Mol. Plant Pathol. 34: 3-12   DOI
15 Kauss, H., W. Jeblick, and A. Domard. 1989. The degree of polymerization and N-acetylation of chitosan determines its ability to elicit callose formation in suspension cells and protoplast of Catharanthus roseus. Planta 178: 385-392   DOI   ScienceOn
16 Yarnano, N., N. Oura, J. Wang, and S. Fujishima. 1997. Cloning and sequencing of the gene for N-acetylglucosamine use that contract divergent operons(nagE-nagAC) from Vibrio cholerae Non-I. Biosci. Biotech. Biochem. 61: 1349-1353   DOI   ScienceOn
17 Walker-Simons, M., D. Jin, C. A. West, L. Hadwiger, and C. A. Ryan. 1984. Comparison of proteinase inhibitor-inducing activities and phytoalexin elicitor activities of a pure fungal endopolygalacturonase, pectic fragments and chitosans. Plant Physiol. 76: 833-836   DOI   ScienceOn
18 Goethalis, K., M. Gao, K. Tomekpe, M. V. Montagu, and M. Holsters. 1989. Common nodABC genes in Nod locus 1 of Arorhirobium caulinodans : nucleotide sequence and plantinducible expression. Mol. Gen. Genet. 219: 289-298
19 Kafetzopoulos, D., G Thireos, J. Voumakis, and V. Bouriotis. 1993. The primary structure of a fungal chitin deacetylase reveals the function for two bacterial gene products. Proc. Natl. Acad. Sci. USA 90: 8005-8008
20 Caufrier, F., A. Martinou, C. Dupont, and V. Bouriotis. 2003. Carbohydrate esterase family 4 enzymes: substrate specificity. Carbohyd. Res. 338: 687-692   DOI   ScienceOn
21 Martinou, A., D. Koutsioulis, and V. Bouriotis. 2003. Cloning and expression of a chitin deacetylase gene(CDA2) from Saccharomyces cerevisiae in Escherichia coli . Purifiaction and characterization of the cobalt-dependent recombinant enzyme. Enzym. Microbial Technol 32: 757-763   DOI   ScienceOn
22 Sannan, T., K. Kurita, and Y. lwakura. 1976. Studies on chitin. Makromol Chem. 177: 3589-3600   DOI
23 Tokuyasu, K., H. Ono, K. Hayashi, and Y. Mori. 1999. Reverse hydrolysis reaction of chitin deacetylase and enzymatic synthesis of ${\beta}-D-GlcNAc-(1{\to}4)-GlcN$ from chitobiose. Carbohydr. Res. 322:26-31   DOI   PUBMED   ScienceOn
24 Christodoulidou, A., P. Briza, A. Ellinger, and V. Boriotis. 1999. Yeast ascospore wall assembly requires two chitin deacetylase isozymes. FEBS Lett. 460: 275-279   DOI   ScienceOn
25 Tokuyasu, K., H. Ono, Y. Kitagawa, M. Ohnishi-Kameyama, K. Hayashi, and Y. Mori. 1999. Selective N-deacetylation of ${\rho}-nitrophenyl$ $N,N -diacetyl-{\beta} -chitobioside$ and its use to differentiate the action of two types of chitinases. Carbohydr. Res. 316: 173-178   DOI   ScienceOn
26 Tokuyasu, K., H. Ono, M. Mitsutomi, K. Hayashi, and Y. Mori. 2000. Synthesis of a chitosan tetramer derivative,${\beta}-D-GlcNAc-(1{\to} 4)-{\beta}-D-GlcNAc-(1{\to} 4)-{\beta}-D-GlcNAc-(1{\to} 4)-D-GlcN$ through a partial N-acetylation reaction by chitin deacetylase. Carbohydr. Res. 325: 211-215   DOI   ScienceOn
27 Gao, X., T. Katsumoto, and K. Onodera. 1995. Purification and characterization of chitin deacetylase from Absidia coerulea. J. Biochem. 117: 257-263   DOI   PUBMED
28 Martinou, A., D. Koutsioulis, and V. Bouritiotis. 2002. Expression, purification, and characterization of a cobalt-activated chitin deacetylase(Cda2p) from Saccharomyces cerevisiae. Prot. Expr. Purif. 24: 11l-116
29 Shrestha, B., K. Blondeau, W. F. Stevens, and F. L. Hegarat. 2004. Expression of chitin deacetylase from Colletotrichum lindemuthianum in Pichia pastoris: purification and characterization. Prot. Expr. Purif. 38: 196-204   DOI   ScienceOn
30 Fernandes, A, M. G A Fontes, H. J. Gilbert, G. P. Hazlewood, T. H. Fernandes, and L. M. A. Ferreira. 1999. Homologous xylanases from Clostridium thermocellum: evidence for bi-functional activity, synergism between xylanase catalytic modules and the presence of xylan-binding domains in enzyme complexes. Biochem. J. 342: 105-110   DOI   ScienceOn
31 Martinou, A., V. Bouriotis, B. T. Stokke, and K. M. Varumd. 1998. Mode of action of chitin deacetylase from M. rouxii on partially N-acetylated chitosans. Carbohydr. Res. 311: 71-78   DOI   ScienceOn
32 Tokuyasu, K., M. Ohnishi-Kameyama, K. Hayashi, and Y. Mori. 1999. Cloning and expression of chitin deacetylase from a deuteromycete, Colletotrichum lindemuthianum. J. Biosci. Bioeng. 87: 418-423   DOI   ScienceOn
33 Versali, M. F. and F. Cierisse. 1997. Expression and characterization of recombinant chitin deacetylase, pp. 273-278, In A. Domard et al.(eds.), Advances in Chitin Science, vol. 2, Jaques Andre Publisher
34 Bergmeyer, H.U. 1974. Method of Enzymatic Analysis, pp. 112-117. 2nd ed. Vol. 1, Verlag Chemie, Weinhein
35 Christodoulidou, A., V. Bouriotis, and G. Thireos. 1996. Two sporulation-specific chitin deacetylase-encoding genes are required for the ascospore wall rigidity of Saccharomyces cerevisiae. J. Biol. Chem. 271: 31420-31425   DOI   ScienceOn
36 Hekmat, O., K. Tokuyasu, and S. G. Withers. 2003. Subsite structure of the endo-type chitin deacetylase from a Deuteromycete, Colletotrichum lindemuthianum: an investigation using steady-state kinetic analysis and MS. Biochem. J. 374: 369-380   DOI   ScienceOn
37 Fukushima, T., H. Yamamoto, A. Atrih, S. J. Foster, and J. Sekiguchi. 2002. A polysaccharide deacetylase gene(pdaa) is required for germination and for production of muramic delta-lactam residues in the spore cortex of Bacillus subtilis. J. Bacteriol. 184: 6007-6015   DOI   ScienceOn
38 Maw, T., T. K. Tan, E. Kohr, and S. M. Wong. 2002. Complete cDNA sequence of chitin deacetylase from Gongronella butleri and its phylogenetic analysis revealed clusters corresponding to taxonomic classification of fungi. J. Biosci. Bioeng. 93: 376-381   PUBMED
39 Tsigos, A., K. Martinou, D. Varum, Kafetzopoulos, and A. Christodoulidou. 1994. Enzymatic deacetylation of chitin employing chitin deacetylases, pp. 98-107. In A. Kamicki et al.(eds.), Chitin World, Wirtschaftsverlag NW, Bremerhaven
40 Vander, P., K. M. Varum, A. Domard, N. E. Gueddari, and B. M. Moerschbacher. 1998. Comparison of the ability of partially acetylated chitosans and chitooligosaccharides to elicit resistance reactions in wheat leaves. Plant Physiol. 118: 1353-1359   DOI   ScienceOn
41 Tokuyasu, K., M. Ohnishi-Kameyama, and K. Hayashi. 1996. Purification and characterization of extracellular chitin deacetylase from Colletotrichum lindemuthianum. Biosci. Biotechnol. Biochem. 60: 1598-1603   DOI   ScienceOn
42 Tsigos, I., N. Zydowicz, A. Martinou, A. Domard, and V. Bouriotis. 1999. Mode of action of chitin deacetylase from M. rouxii on N-acetylchitooligosaccharides. Eur. J. Biochem. 261: 1-9   DOI   ScienceOn
43 Denarie, J., F. Debelle, and J. C. Prome. 1996. Rhizobium lipo-chitooligosaccharide nodulation factors: signaling molecules mediating recognition and morphogenesis. Annu. Rev. Biochem. 65 : 503-535   DOI   ScienceOn
44 Laurie, J., J. H. Clarke, A. Ciruela, C. B. Faulds, G Williamson, H. J. Gilbert, J. E. Rixon, J. Millward-Sadler, and G. P. Hazlewood. 1997. The NodB domain of a multidomain xylanase from Cellulomonas fimi deacetylases acetylxylan. FEMS Microbiol. Lett. 148: 261-264   DOI   ScienceOn
45 Martinou, A., D. Kafetzopoulos, and V. Bouriotis. 1993. Isolation of chitin deacetylase from Mucor rouxii by immunoaffinity chromatography. J. Chromatogr. 644: 35-41   DOI   ScienceOn
46 Martinou, A., D. Kafetzopoulos, and V. Bouriotis. 1995. Chitin deacetylation by enzymatic means: monitoring of deacetylation processes. Carbohydr. Res. 273: 235-242   DOI   ScienceOn
47 Trudel, J. and A. Asselin. 1990. Detection of chitin deacetylase activity after polyacrylamide gel electrophoresis. Anal. Biochem. 189: 249-253   DOI   ScienceOn
48 Tokuyasu, K., H. Ono, M. Ohnishi-Kameyama, K. Hayashi, and Y. Mori. 1997. Deacetylation of chitin oligosaccharides of dp 2-4 by chitin deacetylase from Colletotrichum lindemuthianum. Carbohydr. Res. 303: 353-358   DOI   ScienceOn
49 John, M., H. Rohrig, J. Schmidt, U. Wieneke, and J. Schell. 1993. Rhizobium NodB protein involved in nodulation signal synthesis is a chitooligosaccharide deacetylase. Proc. Natl. Acad. Sci. USA 90: 625-629
50 Ohishi, K., K. Murase, T. Ohta, and H. Etoh. 2000. Cloning and sequencing of the deacetylase gene from Vibrio alginolyticus H-8. J. Biosci. Bioeng. 90: 561-563   PUBMED
51 Vollmer, W. and A. Tomasz. 2000. The pgda gene encodes for a peptidoglycan N-acetylglucosarnine deacetylase in Streptococcus pneumoniae. J. Biol. Chem. 275: 20496-20501   DOI   ScienceOn
52 Chang, K. L., G. Tsai, J. Lee, and W.R. Fu. 1997. Heterogeneous N-deacetylation of chitin in alkaline solution. Carbohydro Res. 303: 327-332   DOI   ScienceOn