Enzymatic Characteristics and Applications of Microbial Chitin Deacetylases

미생물 Chitin Deacetylase의 특성과 응용

  • Kuk Ju-Hee (Glucosamine Saccharide Materials National Research Laboratory, Department of Agricultural Chemistry, Institute of Agricultural Science and Technology, Chonnam National University) ;
  • Jung Woo-Jin (Glucosamine Saccharide Materials National Research Laboratory, Department of Agricultural Chemistry, Institute of Agricultural Science and Technology, Chonnam National University) ;
  • Kim Kil-Yong (Glucosamine Saccharide Materials National Research Laboratory, Department of Agricultural Chemistry, Institute of Agricultural Science and Technology, Chonnam National University) ;
  • Park Ro-Dong (Glucosamine Saccharide Materials National Research Laboratory, Department of Agricultural Chemistry, Institute of Agricultural Science and Technology, Chonnam National University)
  • 국주희 (전남대학교 응용생물공학부, 농업과학기술연구소) ;
  • 정우진 (전남대학교 응용생물공학부, 농업과학기술연구소) ;
  • 김길용 (전남대학교 응용생물공학부, 농업과학기술연구소) ;
  • 박노동 (전남대학교 응용생물공학부, 농업과학기술연구소)
  • Published : 2005.03.01

Abstract

Chitin deacetylase (CDA; EC 3.5.1.41) catalyzes the hydrolysis of N-acetamide bonds of chitin, converting it to chitosan. Chitosan has several applications in areas such as biomedicine, food ingredients, cosmetics, pharmaceuticals, and agriculture. In this paper, occurrence, assay and purification protocols, enzymatic characteristics, substrate specificity, and mode of action of microbial CDAs have been described. Several lines of evidence have substantiated the biological roles involved in cell wall formation and plant-pathogen interactions for fungal CDAs. The gene structure of CDAs has been compared with other family 4 carbohydrate esterases which deacetylate a wide variety of acetylated poly/oligo-saccharides. The use of CDAs for the conversion of chitin to chitosan, in contrast to the presently used chemical procedure, offers the possibility of a controlled, non-degradable process, resulting in the production of well-defined chitosan oligomers and polymers. Insect pathogen that can secrete high levels of chitin-metab­olizing enzymes including CDA can be a possible alternative for new pest management tools.

Chitin deacetylase(CDA; EC 3.5.1.41)는 키틴의 N-acetamide bonds를 가수분해하여 이를 키토산으로 전환시키는 효소다. 한편, 키토산은 의약, 화장품, 식품, 농업 등의 분야에서 다양하게 응용되는 고분자 다당류이다. 본 논문에서는 미생물 유래 CDA의 분포, 분석법, 효소적 특성, 기질 특이성, 작용기작, 유전자의 구조, 생물학적 역할, 응용 등의 최신 지견을 기술하고자 하였다. 미생물 CDA가 세포벽 형성과 식물-미생물 상호작용에 관여한다는 연구결과들을 제시하였으며, CDA의 유전자 구조를 다양한 acetylated poly/oligo-saccharides를 탈아세틸화하는 family 4 carbohydrate esterase의 유전자 구조와 비교하였다. 키틴의 탈아세틸화로 키토산을 제조하는 과정에 CDA의 활용 가능성과, CDA를 포함한 고활성의 키틴 대사효소들을 분비하는 곤충 병원균의 활용 가능성도 살펴보았다.

Keywords

References

  1. Alfonso, C., O.M. Nuero, F. Santamaria, and F. Reyes. 1995. Purification of a heat stable chitin deacetylase from Aspergillus nidulans and its role in cell wall degradation. Curr. Microbiol. 30: 49-54 https://doi.org/10.1007/BF00294524
  2. Araki, Y. and E. Ito. 1975. A pathway of chitosan formation in Mucor rouxii: enzymatic deacetylation of chitin. Eur. J. Biochem. 189: 249-253
  3. Barber, M. S., R. E. Bertram, and J. P. Ride. 1989. Chitin oligosaccharides elicit lignification in wounded wheat leaves. Physiol, Mol. Plant Pathol. 34: 3-12 https://doi.org/10.1016/0885-5765(89)90012-X
  4. Bergmeyer, H.U. 1974. Method of Enzymatic Analysis, pp. 112-117. 2nd ed. Vol. 1, Verlag Chemie, Weinhein
  5. Blair, D. E. and D. M. F. van Aalten. 2004. Structures of Bacillus subtilis PdaA, a family 4 cabohydrate esterase, and a complex with N-acetyl-glucosamine. FEBS Letters 570: 13-19 https://doi.org/10.1016/j.febslet.2004.06.013
  6. Caufrier, F., A. Martinou, C. Dupont, and V. Bouriotis. 2003. Carbohydrate esterase family 4 enzymes: substrate specificity. Carbohyd. Res. 338: 687-692 https://doi.org/10.1016/S0008-6215(03)00002-8
  7. Chang, K. L., G. Tsai, J. Lee, and W.R. Fu. 1997. Heterogeneous N-deacetylation of chitin in alkaline solution. Carbohydro Res. 303: 327-332 https://doi.org/10.1016/S0008-6215(97)00179-1
  8. Christodoulidou, A., V. Bouriotis, and G. Thireos. 1996. Two sporulation-specific chitin deacetylase-encoding genes are required for the ascospore wall rigidity of Saccharomyces cerevisiae. J. Biol. Chem. 271: 31420-31425 https://doi.org/10.1074/jbc.271.49.31420
  9. Christodoulidou, A., P. Briza, A. Ellinger, and V. Boriotis. 1999. Yeast ascospore wall assembly requires two chitin deacetylase isozymes. FEBS Lett. 460: 275-279 https://doi.org/10.1016/S0014-5793(99)01334-4
  10. Davis, L. L. and S. Bartnicki-Garcia, 1984. Chitosan synthesis by the tandem action of chitin synthase and chitin deacetylase from Mucor rouxii. Biochemistry 23: 1065-1073 https://doi.org/10.1021/bi00301a005
  11. Deising, H. and J. Seigrist. 1995. Chitin deacetylase activity of the rust Uromyces viciae-fabaeis controlled by fungal morphogenesis. FEMS Microbiol. Lett. 127: 207-212 https://doi.org/10.1111/j.1574-6968.1995.tb07475.x
  12. Denarie, J., F. Debelle, and J. C. Prome. 1996. Rhizobium lipo-chitooligosaccharide nodulation factors: signaling molecules mediating recognition and morphogenesis. Annu. Rev. Biochem. 65 : 503-535 https://doi.org/10.1146/annurev.bi.65.070196.002443
  13. Fernandes, A, M. G A Fontes, H. J. Gilbert, G. P. Hazlewood, T. H. Fernandes, and L. M. A. Ferreira. 1999. Homologous xylanases from Clostridium thermocellum: evidence for bi-functional activity, synergism between xylanase catalytic modules and the presence of xylan-binding domains in enzyme complexes. Biochem. J. 342: 105-110 https://doi.org/10.1042/0264-6021:3420105
  14. Freiberg, C, R. Fellay, A. Bairoch, W. J. Broughton, A. Rosental, and X. Perret. 1997. Molecular basis of symbiosis between Rhizobium and legumes. Nature 387: 394-401 https://doi.org/10.1038/387394a0
  15. Gao, X., T. Katsumoto, and K. Onodera. 1995. Purification and characterization of chitin deacetylase from Absidia coerulea. J. Biochem. 117: 257-263 https://doi.org/10.1093/jb/117.2.257
  16. Fukushima, T., H. Yamamoto, A. Atrih, S. J. Foster, and J. Sekiguchi. 2002. A polysaccharide deacetylase gene(pdaa) is required for germination and for production of muramic delta-lactam residues in the spore cortex of Bacillus subtilis. J. Bacteriol. 184: 6007-6015 https://doi.org/10.1128/JB.184.21.6007-6015.2002
  17. Goethalis, K., M. Gao, K. Tomekpe, M. V. Montagu, and M. Holsters. 1989. Common nodABC genes in Nod locus 1 of Arorhirobium caulinodans : nucleotide sequence and plantinducible expression. Mol. Gen. Genet. 219: 289-298
  18. Hekmat, O., K. Tokuyasu, and S. G. Withers. 2003. Subsite structure of the endo-type chitin deacetylase from a Deuteromycete, Colletotrichum lindemuthianum: an investigation using steady-state kinetic analysis and MS. Biochem. J. 374: 369-380 https://doi.org/10.1042/BJ20030204
  19. John, M., H. Rohrig, J. Schmidt, U. Wieneke, and J. Schell. 1993. Rhizobium NodB protein involved in nodulation signal synthesis is a chitooligosaccharide deacetylase. Proc. Natl. Acad. Sci. USA 90: 625-629
  20. Kafetzopoulos, D., A. Martinou, and V. Bouriotis. 1993. Bioconversion of chitin to chitosan: purification and characterization of chitin deacetylase from Mucor rouxii. Proc. Natl. Acad. Sci. USA 90: 2564-2568
  21. Kafetzopoulos, D., G Thireos, J. Voumakis, and V. Bouriotis. 1993. The primary structure of a fungal chitin deacetylase reveals the function for two bacterial gene products. Proc. Natl. Acad. Sci. USA 90: 8005-8008
  22. Kauss, H. and B. Bauch. 1998. Chitin deacetylase from Colletotrichum lindemuthianum, pp. 518-523, In W. A Woods and S. T Kellogg. (eds.), Methods in Enzymology, vol. 161, Academic Press, San Diago
  23. Kauss, H., W. Jeblick, and A. Domard. 1989. The degree of polymerization and N-acetylation of chitosan determines its ability to elicit callose formation in suspension cells and protoplast of Catharanthus roseus. Planta 178: 385-392 https://doi.org/10.1007/BF00391866
  24. Laurie, J., J. H. Clarke, A. Ciruela, C. B. Faulds, G Williamson, H. J. Gilbert, J. E. Rixon, J. Millward-Sadler, and G. P. Hazlewood. 1997. The NodB domain of a multidomain xylanase from Cellulomonas fimi deacetylases acetylxylan. FEMS Microbiol. Lett. 148: 261-264 https://doi.org/10.1111/j.1574-6968.1997.tb10298.x
  25. Martinou, A., D. Kafetzopoulos, and V. Bouriotis. 1993. Isolation of chitin deacetylase from Mucor rouxii by immunoaffinity chromatography. J. Chromatogr. 644: 35-41 https://doi.org/10.1016/0021-9673(93)80117-Q
  26. Martinou, A., D. Kafetzopoulos, and V. Bouriotis. 1995. Chitin deacetylation by enzymatic means: monitoring of deacetylation processes. Carbohydr. Res. 273: 235-242 https://doi.org/10.1016/0008-6215(95)00111-6
  27. Martinou, A., V. Bouriotis, B. T. Stokke, and K. M. Varumd. 1998. Mode of action of chitin deacetylase from M. rouxii on partially N-acetylated chitosans. Carbohydr. Res. 311: 71-78 https://doi.org/10.1016/S0008-6215(98)00183-9
  28. Martinou, A., D. Koutsioulis, and V. Bouritiotis. 2002. Expression, purification, and characterization of a cobalt-activated chitin deacetylase(Cda2p) from Saccharomyces cerevisiae. Prot. Expr. Purif. 24: 11l-116
  29. Martinou, A., D. Koutsioulis, and V. Bouriotis. 2003. Cloning and expression of a chitin deacetylase gene(CDA2) from Saccharomyces cerevisiae in Escherichia coli . Purifiaction and characterization of the cobalt-dependent recombinant enzyme. Enzym. Microbial Technol 32: 757-763 https://doi.org/10.1016/S0141-0229(03)00048-6
  30. Maw, T., T. K. Tan, E. Kohr, and S. M. Wong. 2002. Complete cDNA sequence of chitin deacetylase from Gongronella butleri and its phylogenetic analysis revealed clusters corresponding to taxonomic classification of fungi. J. Biosci. Bioeng. 93: 376-381
  31. McMurrough, I., A. Flores-Carreon, and S. Bartnicki-Garcia. 1971. Pathway of chitin synthesis and cellular localization of chitin synthase in Mucor rouxii. J. Biol. Chem. 246: 3999-4007.
  32. Mendgen, K., M. Hahn, and H. Deising. 1996. Morphogenesis and mechanisms of penetration by plant pathogenic fungi. Annu. Rev. Phytopathol. 34: 367-386 https://doi.org/10.1146/annurev.phyto.34.1.367
  33. Nahar, P, Ghormade, V, and V. Deshpande. 2004. The extracellular constitutive production of chitin deacetylase in Metarhrlum anisopliae: possible edge to entomopathogenic fungi in the biological control of insect pests. J. Invertibrate Pathol 85: 80-88 https://doi.org/10.1016/j.jip.2003.11.006
  34. Ohishi, K., K. Murase, T. Ohta, and H. Etoh. 2000. Cloning and sequencing of the deacetylase gene from Vibrio alginolyticus H-8. J. Biosci. Bioeng. 90: 561-563
  35. Sannan, T., K. Kurita, and Y. lwakura. 1976. Studies on chitin. Makromol Chem. 177: 3589-3600 https://doi.org/10.1002/macp.1976.021771210
  36. Shrestha, B., K. Blondeau, W. F. Stevens, and F. L. Hegarat. 2004. Expression of chitin deacetylase from Colletotrichum lindemuthianum in Pichia pastoris: purification and characterization. Prot. Expr. Purif. 38: 196-204 https://doi.org/10.1016/j.pep.2004.08.012
  37. Tokuyasu, K., M. Ohnishi-Kameyama, and K. Hayashi. 1996. Purification and characterization of extracellular chitin deacetylase from Colletotrichum lindemuthianum. Biosci. Biotechnol. Biochem. 60: 1598-1603 https://doi.org/10.1271/bbb.60.1598
  38. Tokuyasu, K., H. Ono, M. Ohnishi-Kameyama, K. Hayashi, and Y. Mori. 1997. Deacetylation of chitin oligosaccharides of dp 2-4 by chitin deacetylase from Colletotrichum lindemuthianum. Carbohydr. Res. 303: 353-358 https://doi.org/10.1016/S0008-6215(97)00166-3
  39. Tokuyasu, K., H. Ono, K. Hayashi, and Y. Mori. 1999. Reverse hydrolysis reaction of chitin deacetylase and enzymatic synthesis of ${\beta}-D-GlcNAc-(1{\to}4)-GlcN$ from chitobiose. Carbohydr. Res. 322:26-31 https://doi.org/10.1016/S0008-6215(99)00213-X
  40. Tokuyasu, K., M. Ohnishi-Kameyama, K. Hayashi, and Y. Mori. 1999. Cloning and expression of chitin deacetylase from a deuteromycete, Colletotrichum lindemuthianum. J. Biosci. Bioeng. 87: 418-423 https://doi.org/10.1016/S1389-1723(99)80088-7
  41. Tokuyasu, K., H. Ono, K. Hayashi, and Y. Mori. 1999. Reverse hydrolysis reaction of chitin deacetylase and enzymatic synthesis of $\beta -D-GlcNAc-(1\rightarrow 4)-GlcN$ from chitobiose. Carbohydr. Res. 322: 26-31 https://doi.org/10.1016/S0008-6215(99)00213-X
  42. Tokuyasu, K., H. Ono, Y. Kitagawa, M. Ohnishi-Kameyama, K. Hayashi, and Y. Mori. 1999. Selective N-deacetylation of ${\rho}-nitrophenyl$ $N,N -diacetyl-{\beta} -chitobioside$ and its use to differentiate the action of two types of chitinases. Carbohydr. Res. 316: 173-178 https://doi.org/10.1016/S0008-6215(99)00002-6
  43. Tokuyasu, K., H. Ono, M. Mitsutomi, K. Hayashi, and Y. Mori. 2000. Synthesis of a chitosan tetramer derivative,${\beta}-D-GlcNAc-(1{\to} 4)-{\beta}-D-GlcNAc-(1{\to} 4)-{\beta}-D-GlcNAc-(1{\to} 4)-D-GlcN$ through a partial N-acetylation reaction by chitin deacetylase. Carbohydr. Res. 325: 211-215 https://doi.org/10.1016/S0008-6215(00)00004-5
  44. Trudel, J. and A. Asselin. 1990. Detection of chitin deacetylase activity after polyacrylamide gel electrophoresis. Anal. Biochem. 189: 249-253 https://doi.org/10.1016/0003-2697(90)90116-Q
  45. Tsigos, A., K. Martinou, D. Varum, Kafetzopoulos, and A. Christodoulidou. 1994. Enzymatic deacetylation of chitin employing chitin deacetylases, pp. 98-107. In A. Kamicki et al.(eds.), Chitin World, Wirtschaftsverlag NW, Bremerhaven
  46. Tsigos, I. and V. Bouriotis. 1995. Purification and characterization of chitin deacetylase from Colletotrichum lindemuthianum. J. Biol. Chem. 270: 26286-26291 https://doi.org/10.1074/jbc.270.44.26286
  47. Tsigos, I., N. Zydowicz, A. Martinou, A. Domard, and V. Bouriotis. 1999. Mode of action of chitin deacetylase from M. rouxii on N-acetylchitooligosaccharides. Eur. J. Biochem. 261: 1-9 https://doi.org/10.1046/j.1432-1327.1999.00186.x
  48. Vander, P., K. M. Varum, A. Domard, N. E. Gueddari, and B. M. Moerschbacher. 1998. Comparison of the ability of partially acetylated chitosans and chitooligosaccharides to elicit resistance reactions in wheat leaves. Plant Physiol. 118: 1353-1359 https://doi.org/10.1104/pp.118.4.1353
  49. Versali, M. F. and F. Cierisse. 1997. Expression and characterization of recombinant chitin deacetylase, pp. 273-278, In A. Domard et al.(eds.), Advances in Chitin Science, vol. 2, Jaques Andre Publisher
  50. Vollmer, W. and A. Tomasz. 2000. The pgda gene encodes for a peptidoglycan N-acetylglucosarnine deacetylase in Streptococcus pneumoniae. J. Biol. Chem. 275: 20496-20501 https://doi.org/10.1074/jbc.M910189199
  51. Walker-Simons, M., D. Jin, C. A. West, L. Hadwiger, and C. A. Ryan. 1984. Comparison of proteinase inhibitor-inducing activities and phytoalexin elicitor activities of a pure fungal endopolygalacturonase, pectic fragments and chitosans. Plant Physiol. 76: 833-836 https://doi.org/10.1104/pp.76.3.833
  52. Yarnano, N., N. Oura, J. Wang, and S. Fujishima. 1997. Cloning and sequencing of the gene for N-acetylglucosamine use that contract divergent operons(nagE-nagAC) from Vibrio cholerae Non-I. Biosci. Biotech. Biochem. 61: 1349-1353 https://doi.org/10.1271/bbb.61.1349