• Title/Summary/Keyword: Hydrological analysis

Search Result 793, Processing Time 0.029 seconds

Analysis of hydrologic chracterustucs for Milyang river basin with a GIS (GIS를 이용한 밀양강 유역의 지형학적 특성 분석)

  • 유승근;최성규;문상원
    • Spatial Information Research
    • /
    • v.10 no.1
    • /
    • pp.107-122
    • /
    • 2002
  • Hydrological characteristics would be utilized to apply such as hydrologic modelling or basin management. This study is to extract hydrological characteristics through DEM and stream network analysis using a hydrologic unit map and digital topographic map in Milyang river basin. OEM and stream network was generated from digital topographic map. Especially stream network was allowed direction, stream order, and topology. As a result of the study, it shows that Milyang river has been changing geologically mature stage into old phase and the landform of Milyang river correspond to Horton-Strahler's law on morphology of stream. This methodology can be applicable to other areas related to hydrological characteristics with vector data.

  • PDF

A Study on the Mass Balance Analysis of Non-Degradable Substances for Bioreactor Landfill

  • Chun, Seung-Kyu
    • Environmental Engineering Research
    • /
    • v.17 no.4
    • /
    • pp.191-196
    • /
    • 2012
  • Analysis of hydrological safety as well as the determination of many substance concentrations are necessary when bioreactor systems are introduced to landfill operations. Therefore, hydrological and substance balance model was developed since it can be applied to various bioreactor landfill operation systems. For the final evaluation of the model's effectiveness, four different methods of injections (leachate alone, leachate and organic waste water, leachate and reverse osmosis concentrate, and all the above three combination) was applied to 1st landfill site of Sudokwon landfill. As a result, the water content of the hypothetical cases for four different systematic bioreactors is projected to be increased up to 35.5% in next 10 years, and this indicated that there will be no problems in meeting the hydrological safety. Also, the final $Cl^-$ concentration after 10-yr time period was projected to be between from minimum 126 to maximum 3,238 mg/L, which could be still a decrease from the original value of 3,278 mg/L. According to the proposed model, whether the substance concentration becomes increased or decreased largely depends on the ratio of initial quantity of inner landfill leachate and the rate of injection.

Water and mass balance analysis for hydrological model development in paddy fields

  • Tasuku, KATO;Satoko, OMINO;Ryota, TSUCHIYA;Satomi, TABATA
    • Proceedings of the Korea Water Resources Association Conference
    • /
    • 2015.05a
    • /
    • pp.238-238
    • /
    • 2015
  • There are demands for water environmental analysis of discharge processes in paddy fields, however, it is not fully understood in nutrients discharge process for watershed modeling. As hydrological processes both surface and ground water and agricultural water managements are so complex in paddy fields, the development of lowland paddy fields watershed model is more difficult than upland watershed model. In this research, the improvement of SWAT (Soil and Water Assessment Tool) model for a paddy watershed was conducted. First, modification of surface inundated process was developed in improved pot hole option. Those modification was evaluated by monitoring data. Second, the monitoring data in river and drainage channel in lowland paddy fields from 2012 to 2014 were analyzed to understand discharge characteristics. As a case study, Imbanuma basin, Japan, was chosen as typical land and water use in Asian countries. In this basin, lowland paddy fields are irrigated from river water using small pumps that were located in distribution within the watershed. Daily hydrological fluctuation was too complex to estimate. Then, to understand surface and ground water discharge characteristics in irrigation (Apr-Aug) and non-irrigation (Sep-Mar) period, the water and material balance analysis was conducted. The analysis was composed two parts, watershed and river channel blocks. As results of model simulation, output was satisfactory in NSE, but uncertainty was large. It would be coming from discharge process in return water. The river water and ground water in paddy fields were exchanged each other in 5.7% and 10.8% to river discharge in irrigation and non-irrigation periods, respectively. Through this exchange, nutrient loads were exchanged between river and paddy fields components. It suggested that discharge from paddy fields was not only responded to rainfall but dynamically related with river water table. In general, hydrological models is assumed that a discharge process is one way from watershed to river. However, in lowland paddy fields, discharge process is dynamically changed. This function of paddy fields showed that flood was mitigated and temporally held as storage in ground water. Then, it showed that water quality was changed in mitigated function in the water exchange process in lowland paddy fields. In future, it was expected that hydrological models for lowland paddy fields would be developed with this mitigation function.

  • PDF

The Effect of Grid Size in a Slope Analysis of Terrain by DEM for Hydrological Analysis (수문해석을 위한 DEM에 의한 지형의 경사도분석에서 격자크기의 영향)

  • 양인태;김연준
    • Journal of the Korean Society of Surveying, Geodesy, Photogrammetry and Cartography
    • /
    • v.15 no.2
    • /
    • pp.221-230
    • /
    • 1997
  • In hydrology analysis, the result of a slope analysis for terrain have an very important effect on water quality and water quantity Recently, a slope analysis tend to use the digital elevation model rater than the traditional map sheet. But a terrain slope analysis by the digital elevation model depends on grid size of the digital elevation model. Hence the effect of a slope analysis by the digital elevation model is a important factor. In this study, therefor, in order to determine a hydrological parameter and a terrain parameter for simulation of the water quality and the hydrological property, we adapted two sample area that are the Nerin stream of the basin of the Soyang lake and a Osip stream of Samchuk, and its individual coverages are $640\;km^2$ and $33\;km^2$. Also to analyze the effect of grid size in the slope of a basin, we apply DEM changing a grid size respectively at intervals of 100 m from 100 m to 1.000m for the Nerin stream basin and at intervals of 10 m from 20 m to 300 m for the Osip stream basin.

  • PDF

Assessment of Water Quality Characteristics in the Middle and Upper Watershed of the Geumho River Using Multivariate Statistical Analysis and Watershed Environmental Model (다변량통계분석 및 유역환경모델을 이용한 금호강 중·상류 유역의 수질특성평가)

  • Seo, Youngmin;Kwon, Kooho;Choi, Yun Young;Lee, Byung Joon
    • Journal of Korean Society on Water Environment
    • /
    • v.37 no.6
    • /
    • pp.520-530
    • /
    • 2021
  • Multivariate statistical analysis and an environmental hydrological model were applied for investigating the causes of water pollution and providing best management practices for water quality improvement in urban and agricultural watersheds. Principal component analysis (PCA) and cluster analysis (CA) for water quality time series data show that chemical oxygen demand (COD), total organic carbon (TOC), suspended solids (SS) and total phosphorus (T-P) are classified as non-point source pollutants that are highly correlated with river discharge. Total nitrogen (T-N), which has no correlation with river discharge and inverse relationship with water temperature, behaves like a point source with slow and consistent release. Biochemical oxygen demand (BOD) shows intermediate characteristics between point and non-point source pollutants. The results of the PCA and CA for the spatial water quality data indicate that the cluster 1 of the watersheds was characterized as upstream watersheds with good water quality and high proportion of forest. The cluster 3 shows however indicates the most polluted watersheds with substantial discharge of BOD and nutrients from urban sewage, agricultural and industrial activities. The cluster 2 shows intermediate characteristics between the clusters 1 and 3. The results of hydrological simulation program-Fortran (HSPF) model simulation indicated that the seasonal patterns of BOD, T-N and T-P are affected substantially by agricultural and livestock farming activities, untreated wastewater, and environmental flow. The spatial analysis on the model results indicates that the highly-populated watersheds are the prior contributors to the water quality degradation of the river.

The Effect of The Channel Networks Resolution According to Strahler's Ordering Scheme on The Hydrological Response Function (Strahler 차수법칙에 따른 하천망 해상도가 수문학적 응답함수에 미치는 영향)

  • Choi, Yong-Joon;Ahn, Jung-Min;Kim, Joo-Cheol
    • Journal of Korean Society for Geospatial Information Science
    • /
    • v.20 no.1
    • /
    • pp.13-20
    • /
    • 2012
  • In this study, the change pattern of hydrological response function as development has been observed. The target watershed was selected Tanbu sub-Basin in the Bocheong Basin. The applied channel networks are composed of 10 cases that are channel networks by strahler's ordering scheme and cases of all grids channel or the hillslope in basin. To each case of grid in basin, channel and hillslope drainage path lengths to outlet of basin are calculated, and hydrological response function was calculated by Nash Model. As results of this analysis, the peak discharge of hydrological response function is increased and peak time is shortened as development of channel networks. And based on statistical characteristics of hydrological response function, mean (lag time) and variance of travel time are reduced exponentially.

Parameter and Modeling Uncertainty Analysis of Semi-Distributed Hydrological Model using Markov-Chain Monte Carlo Technique (Markov-Chain Monte Carlo 기법을 이용한 준 분포형 수문모형의 매개변수 및 모형 불확실성 분석)

  • Choi, Jeonghyeon;Jang, Suhyung;Kim, Sangdan
    • Journal of Korean Society on Water Environment
    • /
    • v.36 no.5
    • /
    • pp.373-384
    • /
    • 2020
  • Hydrological models are based on a combination of parameters that describe the hydrological characteristics and processes within a watershed. For this reason, the model performance and accuracy are highly dependent on the parameters. However, model uncertainties caused by parameters with stochastic characteristics need to be considered. As a follow-up to the study conducted by Choi et al (2020), who developed a relatively simple semi-distributed hydrological model, we propose a tool to estimate the posterior distribution of model parameters using the Metropolis-Hastings algorithm, a type of Markov-Chain Monte Carlo technique, and analyze the uncertainty of model parameters and simulated stream flow. In addition, the uncertainty caused by the parameters of each version is investigated using the lumped and semi-distributed versions of the applied model to the Hapcheon Dam watershed. The results suggest that the uncertainty of the semi-distributed model parameters was relatively higher than that of the lumped model parameters because the spatial variability of input data such as geomorphological and hydrometeorological parameters was inherent to the posterior distribution of the semi-distributed model parameters. Meanwhile, no significant difference existed between the two models in terms of uncertainty of the simulation outputs. The statistical goodness of fit of the simulated stream flows against the observed stream flows showed satisfactory reliability in both the semi-distributed and the lumped models, but the seasonality of the stream flow was reproduced relatively better by the distributed model.

Projection and Analysis of Drought according to Future Climate and Hydrological Information in Korea (미래 기후·수문 정보에 따른 국내 가뭄의 전망 및 분석)

  • Sohn, Kyung Hwan;Bae, Deg Hyo;Ahn, Jae Hyun
    • Journal of Korea Water Resources Association
    • /
    • v.47 no.1
    • /
    • pp.71-82
    • /
    • 2014
  • The objective of this study is to project and analyze drought conditions using future climate and hydrology information over South Korea. This study used three Global Climate Models (GCMs) and three hydrological models considering the uncertainty of future scenario. Standardized Precipitation Index (SPI), Standardized Runoff Index (SRI) and Standardized Soil moisture Index (SSI) classified as meteorological, hydrological and agricultural droughts were estimated from the precipitation, runoff and soil moisture. The Mann-Kendall test showed high increase in future drought trend during spring and winter seasons, and the drought frequency of SRI and SSI is expected higher than that of SPI. These results show the high impact of climate change on hydrological and agriculture drought compared to meteorological drought.

Coupled Hydrological-mechanical Behavior Induced by CO2 Injection into the Saline Aquifer of CO2CRC Otway Project (호주 오트웨이 프로젝트 염수층 내 CO2 주입에 따른 수리-역학적 연계거동 분석)

  • Park, Jung-Wook;Shinn, Young Jae;Rutqvist, Jonny;Cheon, Dae-Sung;Park, Eui-Seob
    • Tunnel and Underground Space
    • /
    • v.26 no.3
    • /
    • pp.166-180
    • /
    • 2016
  • The present study numerically simulated the CO2 injection into the saline aquifer of CO2CRC Otway pilot project and the resulting hydrological-mechanical coupled process in the storage site by TOUGH-FLAC simulator. A three-dimensional numerical model was generated using the stochastic geological model which was established based on well log and core data. It was estimated that the CO2 injection of 30,000t over a period of 200 days increased the pressure near the injection point by 0.5 MPa at the most. The pressure increased rapidly and tended to approach a certain value at an early stage of the injection. The hydrological and mechanical behavior observed from the CO2 flow, effective stress change and stress-strength ratio revealed that the CO2 injection into the saline aquifer under the given condition would not have significant effects on the mechanical safety of the storage site and the hydrological state around the adjacent fault.

Characteristics Detection of Hydrological and Water Quality Data in Jangseong Reservoir by Application of Pattern Classification Method (패턴분류 방법 적용에 의한 장성호 수문·수질자료의 특성파악)

  • Park, Sung-Chun;Jin, Young-Hoon;Roh, Kyong-Bum;Kim, Jongo;Yu, Ho-Gyu
    • Journal of Korean Society on Water Environment
    • /
    • v.27 no.6
    • /
    • pp.794-803
    • /
    • 2011
  • Self Organizing Map (SOM) was applied for pattern classification of hydrological and water quality data measured at Jangseong Reservoir on a monthly basis. The primary objective of the present study is to understand better data characteristics and relationship between the data. For the purpose, two SOMs were configured by a methodologically systematic approach with appropriate methods for data transformation, determination of map size and side lengths of the map. The SOMs constructed at the respective measurement stations for water quality data (JSD1 and JSD2) commonly classified the respective datasets into five clusters by Davies-Bouldin Index (DBI). The trained SOMs were fine-tuned by Ward's method of a hierarchical cluster analysis. On the one hand, the patterns with high values of standardized reference vectors for hydrological variables revealed the high possibility of eutrophication by TN or TP in the reservoir, in general. On the other hand, the clusters with low values of standardized reference vectors for hydrological variables showed the patterns with high COD concentration. In particular, Clsuter1 at JSD1 and Cluster5 at JSD2 represented the worst condition of water quality with high reference vectors for rainfall and storage in the reservoir. Consequently, SOM is applicable to identify the patterns of potential eutrophication in reservoirs according to the better understanding of data characteristics and their relationship.