• Title/Summary/Keyword: Hydrologic estimation

Search Result 236, Processing Time 0.03 seconds

Estimation of low flow by grid-based continuous hydrologic modelling (격자기반 분포형 수문모델링을 활용한 하천갈수량 산정)

  • Lee, Yonggwan;Jang, Wonjin;Lee, Jiwan;Han, Daeyoung;Kim, Seongjoon
    • Proceedings of the Korea Water Resources Association Conference
    • /
    • 2021.06a
    • /
    • pp.34-34
    • /
    • 2021
  • 본 연구에서는 격자기반 분포형 수문모델링을 통해 하천갈수량을 추정하고자 한다. 분포형 수문모형은 단방향흐름 알고리즘에 의한 토양 물수지식을 기반으로 개발되었으며 운동파(kinematic wave) 이론을 적용하여 지표 및 지표하 유출을 모의한다. 또한, 격자별로 수문학적 물수지요소인 차단량, 증발산량, 침투 및 침루량, 지하수충전량 등을 계산하며, 댐·보 방류량을 해당 지점 격자의 물수지에 적용할 수 있도록 개발하였다. 본 모형은 2개의 다목적댐과 3개의 다기능보가 위치한 금강유역(9,645.5 km2)에 적용하였으며, 유역 면적과 하천 유속을 고려하여 1 km × 1 km 격자를 구성하고 10분 간격으로 2013년부터 2020년까지 수문모의를 진행하였다. 모형의 입력자료로 유역 인근의 12개 기상관측소로부터 시단위 기상자료를 구축하였으며, 모형의 검보정은 일단위 관측유량(Q), 플럭스 타워 증발산량, 실측 토양수분 및 지하수위 자료를 구축하여 활용하였다. 댐 및 보 지점에 대해 Q와 1/Q로 검보정을 수행한 결과, 평균 결정계수(R2)는 댐 지점에서 0.53~0.65, 보 지점에서 0.46~0.69의 값을 나타냈으며, Nash-Shtcliffe efficiency(NSE)는 댐 지점에서 0.46~0.55, 보 지점에서 0.31~0.65의 값을 나타냈다. 공간 보정을 위해 증발산량, 토양수분, 지하수위에 대한 검보정을 수행할 예정이며, 유황곡선을 활용하여 하천차수, 토양속성 및 토지이용에 따른 하천갈수량을 분석할 예정이다.

  • PDF

Change of AMC due to Climatic Change (기후변화에 따른 선행토양함수조건(AMC)의 변화)

  • Yoo, Chulsang;Park, Cheong Hoon;Kim, Joong Hoon
    • KSCE Journal of Civil and Environmental Engineering Research
    • /
    • v.26 no.3B
    • /
    • pp.233-240
    • /
    • 2006
  • One of the main factor that effects on the CN's value in SCS Curve Number method for the estimation of direct runoff is the antecedent soil moisture condition (AMC). It is also common to use the AMC-III in hydrologic practice, which provides the largest runoff as possible. In this paper, AMC defending on the rainfall characteristics is analyzed using daily rainfall data at rainy season (June~September) of the Seoul station from 1961 to 2002. The probability mass function of AMC is also investigated to analyze the variation of AMC based on climate change, scenarios from several General Circulation Model (GCM) predictions. As a results we can find that the occurrence of AMC-I is reduced, and AMC-III is increased, whereas AMC-II does not change.

Conversion Factor Calculation of Annual Maximum Precipitation in Korea Between Fixed and Sliding Durations (고정시간과 임의시간에 따른 우리나라 연최대강우량의 환산계수 산정)

  • Oh, Tae Suk;Moon, Young-Il
    • KSCE Journal of Civil and Environmental Engineering Research
    • /
    • v.28 no.5B
    • /
    • pp.515-524
    • /
    • 2008
  • An estimation of reliable probability precipitation is one of the most important processes for reasonable hydrologic structure design. A probability precipitation has been calculated by frequency analysis using annual maximum rainfall series on the each duration among the observed rainfall data. Annual maximum rainfall series have abstracted on hourly rainfall data or daily rainfall data. So, there is necessary to proper conversion factor between the fixed and sliding durations. Therefore, in this study, conversion factors on the each duration between fixed and sliding durations have calculated using minutely data compared to hourly and daily data of 37 stations observed by Meteorological Administration in Korea. Also, regression equations were computed by regression analysis of conversion factors on the each duration. Consequently, conversion factors were used basis data for calculations of stable probability precipitation.

Development of Pollutant Load Estimation System for Hydrologic Component, WAPLE4 (수문컴포넌트별 오염부하 산정이 가능한 WAPLE4의 개발)

  • Jeong, Yeon Ji;Jeong, Yeon Seok;Lee, Seo Ro;Yang, Dong Seok;Lee, Gwan Jae;Choi, Yong Hun;Lim, Kyoung Jae
    • Proceedings of the Korea Water Resources Association Conference
    • /
    • 2022.05a
    • /
    • pp.192-192
    • /
    • 2022
  • 하천유량은 기저유량과 직접유량으로 구성되어 있으며 기저유량은 갈수기 하천유량의 대부분을 차지하므로 직접유출과 기저유출의 분리는 중요하다. 또한, T-N, T-P는 기저유출에 영향을 많이 받는 수질 항목으로 기저유출과 직접유출에 의한 오염부하량을 정확히 분석해야한다. 따라서, 기저유출의 오염부하량 산정을 위해 기존의 WAPLE 2의 단점을 개선한 WAPLE 3가 개발되었으며, WAPLE 3는 유량 곡선의 하강부 변곡점에 붙는 특성을 가지고 있는 Baseflow filter program(BFlow) pass 1값을 사용하여 기저유량을 분리해 기저유출 오염부하량을 산정한다. WAPLE 3는 하천유량 중 기저유출을 어느 정도 분리하는지 결정하는 filter parameter 값을 Nathan과 McMahon가 제시한 최적값인 0.925를 사용하였다. 그러나 지형과 강우량 등에 따라 하천 유량에서의 기저유출 비율은 달라지기 때문에 이러한 한계점을 극복하기 위해 WAPLE 4를 개발하였다. WAPLE 4는 filter parameter 값을 사용자가 변경할 수 있게 개발하여 강우에 의한 유량변동 특정이 고려된 기저유량 및 오염부하를 산정하여 결과에 대한 정확도를 높였다. 또한, WAPLE 4는 강우시 오염부하량 산정에 탁월한 Numeric Integration(NI) 방법을 사용하여 직접유량, 기저유량의 오염부하량 및 유량가중평균농도(FWMC) 산정이 가능하도록 하였다. 본 연구의 결과는 오염총량제 및 기저유량 관리를 통한 유량 관련 정책 수립 시 기초자료로 활용될 수 있을 것으로 판단된다.

  • PDF

Estimation of Reference Crop Evapotranspiration Using Backpropagation Neural Network Model (역전파 신경망 모델을 이용한 기준 작물 증발산량 산정)

  • Kim, Minyoung;Choi, Yonghun;O'Shaughnessy, Susan;Colaizzi, Paul;Kim, Youngjin;Jeon, Jonggil;Lee, Sangbong
    • Journal of The Korean Society of Agricultural Engineers
    • /
    • v.61 no.6
    • /
    • pp.111-121
    • /
    • 2019
  • Evapotranspiration (ET) of vegetation is one of the major components of the hydrologic cycle, and its accurate estimation is important for hydrologic water balance, irrigation management, crop yield simulation, and water resources planning and management. For agricultural crops, ET is often calculated in terms of a short or tall crop reference, such as well-watered, clipped grass (reference crop evapotranspiration, $ET_o$). The Penman-Monteith equation recommended by FAO (FAO 56-PM) has been accepted by researchers and practitioners, as the sole $ET_o$ method. However, its accuracy is contingent on high quality measurements of four meteorological variables, and its use has been limited by incomplete and/or inaccurate input data. Therefore, this study evaluated the applicability of Backpropagation Neural Network (BPNN) model for estimating $ET_o$ from less meteorological data than required by the FAO 56-PM. A total of six meteorological inputs, minimum temperature, average temperature, maximum temperature, relative humidity, wind speed and solar radiation, were divided into a series of input groups (a combination of one, two, three, four, five and six variables) and each combination of different meteorological dataset was evaluated for its level of accuracy in estimating $ET_o$. The overall findings of this study indicated that $ET_o$ could be reasonably estimated using less than all six meteorological data using BPNN. In addition, it was shown that the proper choice of neural network architecture could not only minimize the computational error, but also maximize the relationship between dependent and independent variables. The findings of this study would be of use in instances where data availability and/or accuracy are limited.

Analysis of Groundwater Variations using the Relationship Between Groundwater use and Daily Minimum Temperature in a Water Curtain Cultivation Site (수막재배지역에서 일최저기온과 지하수 이용량의 상관관계를 이용한 지하수위 변화 분석)

  • Chang, Sunwoo;Chung, Il-Moon
    • The Journal of Engineering Geology
    • /
    • v.24 no.2
    • /
    • pp.217-225
    • /
    • 2014
  • Water curtain cultivation (WCC) systems in Korea have depleted water resources in shallow aquifers through massive pumping of groundwater. The goal of this study is to simulate the groundwater variations observed from massive groundwater pumping at a site in Cheongweon. MODFLOW was used to simulate three-dimensional regional groundwater flow, and the SWAT (Soil and Water Assessment Tool) watershed hydrologic model was employed to introduce temporal changes in groundwater recharge into the MODFLOW model input. Additionally, the estimation method for groundwater discharge in WCC areas (Moon et al., 2012) was incorporated into a groundwater pumping schedule as a MODFLOW input. We compared simulated data and field measurements to determine the degree to which winter season groundwater drawdown is effectively modeled. A simulation time of 107 days was selected to match the observed groundwater drawdown from November, 2012 to March, 2013. We obtained good agreement between the simulated drawdown and observed groundwater levels. Thus, the estimation method using daily minimum temperatures, may be applicable to other cultivation areas and can serve as a guideline in simulating the regional flow of riverside groundwater aquifers.

Estimation of Flood Discharge Using Satellite-Derived Rainfall in Abroad Watersheds - A Case Study of Sebou Watershed, Morocco - (위성 강우자료를 이용한 해외 유역 홍수량 추정 - 모로코 세부강 유역을 대상으로 -)

  • KIM, Joo-Hun;CHOI, Yun-Seok;KIM, Kyung-Tak
    • Journal of the Korean Association of Geographic Information Studies
    • /
    • v.20 no.3
    • /
    • pp.141-152
    • /
    • 2017
  • This paper presents a technical method for flood estimation based on satellite rainfall and satellite rainfall correction method for watersheds lacking measurement data. The study area was the Sebou Watershed, Morocco. The Integrated Flood Analysis System(IFAS) and Grid-based Rainfall-Runoff Model(GRM) were applied to estimate watershed runoff. Daily rainfall from ground gauges and satellite-derived hourly data were used. In the runoff simulation using satellite rainfall data, the composites of the daily gauge rainfall and the hourly satellite data were applied. The Shuttle Radar Topographic Mission Digital Elevation Model(SRTM DEM) with a 90m spatial resolution and 1km resolution data from Global map land cover and United States Food and Agriculture Organization(US FAO) Harmonized World Soil Database(HWSD) were used. Underestimated satellite rainfall data were calibrated using ground gauge data. The simulation results using the revised satellite rainfall data were $5,878{\sim}7,434m^3/s$ and $6,140{\sim}7,437m^3/s$ based on the IFAS and GRM, respectively. The peak discharge during flooding of Sebou River Watershed in 2009~2010 was estimated to range from $5,800m^3/s$ to $7,500m^3/s$. The flood estimations from the two hydrologic models using satellite-derived rainfall data were similar. Therefore, the calibration method using satellite rainfall suggested in this study can be applied to estimate the flood discharge of watersheds lacking observational data.

Estimates of Regional Flood Frequency in Korea (우리나라의 빈도홍수량의 추정)

  • Kim, Nam-Won;Won, Yoo-Seung
    • Journal of Korea Water Resources Association
    • /
    • v.37 no.12
    • /
    • pp.1019-1032
    • /
    • 2004
  • Flood frequency estimate is an essential index for determining the scale of small and middle hydraulic structure. However, this flood quantity could not be estimated directly for practical design purpose due to the lack of available flood data, and indirect method like design rainfall-runoff method have been used for the estimation of design flood. To give the good explain for design flood estimates, regional flood frequency analysis was performed by flood index method in this study. First, annual maximum series were constructed by using the collected data which covers from Japanese imperialism period to 1999. Wakeby distribution recommended by WMO(1989) was used for regional flood frequency analysis and L-moment method by Hosking (1990) was used for parameter estimation. For the homogeneity of region, the discordance and heterogeneity test by Hosking and Wallis(1993) was carried for 4 major watersheds in Korea. Physical independent variable correlated with index flood was watershed area. The relationship between specific discharge and watershed area showed a type of power function, i.e. the specific discharge decreases as watershed area increases. So flood quantity according to watershed area and return period was presented for each watershed(Han rivet, Nakdong river, Geum river and Youngsan/Seomjin river) by using this relation type. This result was also compared with the result of point frequency analysis and its regionalization. It was shown that the dam construction couldn't largely affect the variation of peak flood. The property of this study was also examined by comparison with previous studies.

Bivariate Frequency Analysis of Rainfall using Copula Model (Copula 모형을 이용한 이변량 강우빈도해석)

  • Joo, Kyung-Won;Shin, Ju-Young;Heo, Jun-Haeng
    • Journal of Korea Water Resources Association
    • /
    • v.45 no.8
    • /
    • pp.827-837
    • /
    • 2012
  • The estimation of the rainfall quantile is of great importance in designing hydrologic structures. Conventionally, the rainfall quantile is estimated by univariate frequency analysis with an appropriate probability distribution. There is a limitation in which duration of rainfall is restrictive. To overcome this limitation, bivariate frequency analysis by using 3 copula models is performed in this study. Annual maximum rainfall events in 5 stations are used for frequency analysis and rainfall depth and duration are used as random variables. Gumbel (GUM), generalized logistic (GLO) distributions are applied for rainfall depth and generalized extreme value (GEV), GUM, GLO distributions are applied for rainfall duration. Copula models used in this study are Frank, Joe, and Gumbel-Hougaard models. Maximum pseudo-likelihood estimation method is used to estimate the parameter of copula, and the method of probability weighted moments is used to estimate the parameters of marginal distributions. Rainfall quantile from this procedure is compared with various marginal distributions and copula models. As a result, in change of marginal distribution, distribution of duration does not significantly affect on rainfall quantile. There are slight differences depending on the distribution of rainfall depth. In the case which the marginal distribution of rainfall depth is GUM, there is more significantly increasing along the return period than GLO. Comparing with rainfall quantiles from each copula model, Joe and Gumbel-Hougaard models show similar trend while Frank model shows rapidly increasing trend with increment of return period.

Flood Inflow Estimation at Large Multipurpose Dam using Distributed Model with Measured Flow Boundary Condition at Direct Upstream Channels (직상류 계측유량경계조건과 분포형모델을 이용한 대규모 다목적댐 홍수유입량 산정)

  • Hong, Sug-Hyeon;Kang, Boosik
    • KSCE Journal of Civil and Environmental Engineering Research
    • /
    • v.35 no.5
    • /
    • pp.1039-1049
    • /
    • 2015
  • The inflow estimation at large multipurpose dam reservoir is carried out by considering the water balance among the discharge, the storage change during unit time interval obtained from the observed water level near dam structure and area-volume curve. This method can be ideal for level pool reservoir but include potential errors when the inflow is influenced by the water level slope due to backwater effects from upstream flood inflows and strong wind induced by typhoon. In addition, the other uncertainties arisen from the storage reduction due to sedimentation after the dam construction and water level noise due to mechanical vibration transmitted from the electric power generator. These uncertainties impedes the accurate hydraulic inflow measurement requiring exquisite hydrometric data arrangement for reservoir waterbody. In this study, the distributed hydrologic model using UBC-3P boundary setting was applied and its feasibility was evaluated. Finally, the modeling performance has been verified since the calculated determination coefficient has been in between 0.96 to 0.99 after comparing with observed peak inflow and total inflow at Namgang dam reservoir.